Bayesian Networks

Course of Signal Processing and Data Fusion

A.A. 2021-2022

Probabilistic Graphical Models Key Idea

• Represent the "World" as a set of **Random Variables** $X_1, ..., X_N$ and the **Joint Distribution** $P_{X_1,...,X_N}(x_1, ..., x_N)$

 Represent, graphically, the independence/dependence relations among Random Variables

Bayesian Networks

Directed Acyclic Graph (DAG)

- Nodes: Random Variables
- Edges: Dependences
- No directed cycles

 Different ordering → different decomposition → different graphical representation

$$p(a, b, c) = p(c|a, b)p(a, b) = p(c|a, b)p(b|a)p(a)$$

$$p(x_1,\ldots,x_K) = p(x_K|x_1,\ldots,x_{K-1})\ldots p(x_2|x_1)p(x_1)$$

Slide from "Pattern recognition and Machine Learning", M. Bishop

Chain Rule

The benefits of structure

- Specify, *independently*, all entries of $P_{X_1,...,X_N}(x_1,...,x_N)$, with X_i binary variables, requires O(2^N) space
- Computing marginal of $P_{X_i}(x_i)$ requires to sum over 2^(N-1) states of other variables:

$$P_{X_i}(x_i) = \sum_{x_i} P_{X_1, \dots, X_N}(x_1, \dots, x_N)$$

• The key idea is to specify which variables are independent of others, leading to a structured factorization of the joint probability distribution

Text adapted from "Bayesian Reasoning and Machine Learning", D. Barber

Bayesian Networks

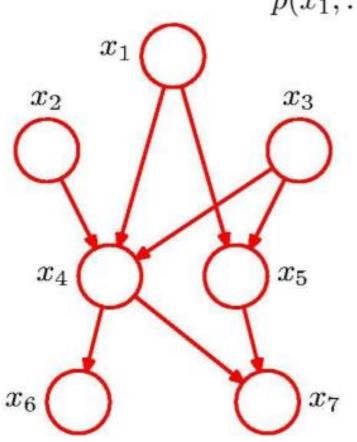
$$p(x_1, \dots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$
$$p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)$$

It is the absence of links that conveys interesting information

General Factorization

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathrm{pa}_k)$$

Slide from "Pattern recognition and Machine Learning", M. Bishop



Wet Grass Example - 1

One morning Tracey leaves her house and realises that her grass is wet. Is it due to overnight rain or did she forget to turn off the sprinkler last night? Next she notices that the grass of her neighbour, Jack, is also wet. This *explains away* to some extent the possibility that her sprinkler was left on, and she concludes therefore that it has probably been raining.

A model of Tracey's world then corresponds to a probability distribution on the joint set of the variables of interest p(T, J, R, S) (the order of the variables is irrelevant).

 $\begin{array}{ll} R \in \{0,1\} & R = 1 \text{ means that it has been raining, and 0 otherwise} \\ S \in \{0,1\} & S = 1 \text{ means that Tracey has forgotten to turn off the sprinkler, and 0 otherwise} \\ J \in \{0,1\} & J = 1 \text{ means that Jack's grass is wet, and 0 otherwise} \\ T \in \{0,1\} & T = 1 \text{ means that Tracey's Grass is wet, and 0 otherwise} \end{array}$

$$p(T, J, R, S) = p(T|J, R, S)p(J, R, S)$$

= $p(T|J, R, S)p(J|R, S)p(R, S)$ Chain Rule
= $p(T|J, R, S)p(J|R, S)p(R|S)p(S)$

Wet Grass Example - 2

$$p(T, J, R, S) = p(T|J, R, S)p(J, R, S)$$

= $p(T|J, R, S)p(J|R, S)p(R, S)$
= $p(T|J, R, S)p(J|R, S)p(R|S)p(S)$
8 4 2 1

p(T|J, R, S) requires us to specify $2^3 = 8$ values – we need p(T = 1|J, R, S) for the 8 joint states of J, R, S. The other value p(T = 0|J, R, S) is given by normalisation : p(T = 0|J, R, S) = 1 - p(T = 1|J, R, S)

For a distribution of N binary variables, we need to specify 2^(N)-1 values in range [0,1]

Text adapted from "Bayesian Reasoning and Machine Learning", D. Barber

Wet Grass Example - 3

We can make some conditional indipendence assumption

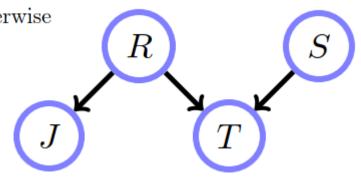
$$p(T|J,R,S) = p(T|R,S)$$

$$p(J|R,S) = p(J|R)$$

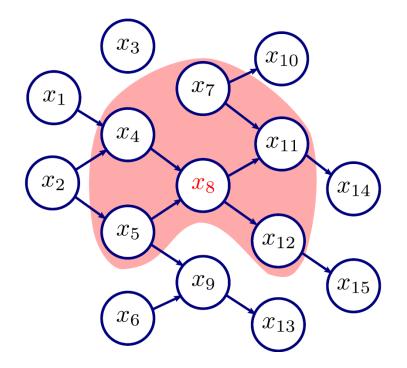
$$p(R|S) = p(R)$$

$$p(T,J,R,S) = p(T|R,S)p(J|R)p(R)p(S)$$

- $R \in \{0, 1\}$ R = 1 means that it has been raining, and 0 otherwise
- $S \in \{0,1\}$ S = 1 means that Tracey has forgotten to turn off the sprinkler, and 0 otherwise
- $J \in \{0, 1\}$ J = 1 means that Jack's grass is wet, and 0 otherwise
- $T \in \{0,1\}$ T = 1 means that Tracey's Grass is wet, and 0 otherwise



Example Factorization

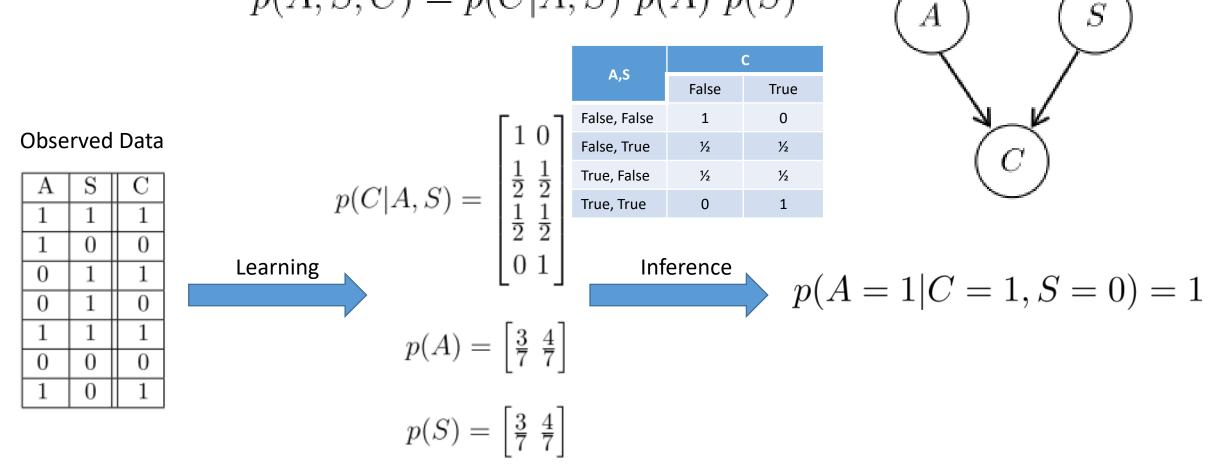


 $Pr(x_{1}...x_{15}) = Pr(x_{1})Pr(x_{2})Pr(x_{3})Pr(x_{4}|x_{1},x_{2})Pr(x_{5}|x_{2})Pr(x_{6})$ $Pr(x_{7})Pr(x_{8}|x_{4},x_{5})Pr(x_{9}|x_{5},x_{6})Pr(x_{10}|x_{7})Pr(x_{11}|x_{7},x_{8})$ $Pr(x_{12}|x_{8})Pr(x_{13}|x_{9})Pr(x_{14}|x_{11})Pr(x_{15}|x_{12}).$

Image from : "Computer Vision: Models, Learning, and Inference", S. Prince

Example Asbestos-Cancer-Smoke

$$p(A, S, C) = p(C|A, S) \ p(A) \ p(S)$$



Single Random Variable - 1

- Consider a discrete single Random Variable X
- Take values in a finite sample space $\mathcal{X} = \{x^1, x^2, ..., x^N\}$
- A generic value of the Random Variable: x
- Random Variable distributed as $\pi_x(x)$: $X \sim \pi_X(x)$

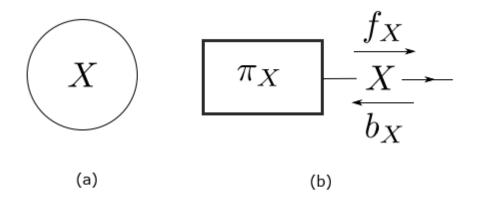


Figure 3.1: Graphical Representation of the Variable. (a) Bayesian representation (b) Factor Graph representation

Single Random Variable - 2

• Functional Notation

 $f_X(x), b_X(x), p_X(x)$

Vector Notation

$$\boldsymbol{f}_{X} = \begin{bmatrix} f_{X}(x^{1}) \\ f_{X}(x^{2}) \\ \dots \\ f_{X}(x^{N}) \end{bmatrix} \quad \boldsymbol{b}_{X} = \begin{bmatrix} b_{X}(x^{1}) \\ b_{X}(x^{2}) \\ \dots \\ b_{X}(x^{N}) \end{bmatrix} \quad \boldsymbol{p}_{X} = \begin{bmatrix} p_{X}(x^{1}) \\ p_{X}(x^{2}) \\ \dots \\ p_{X}(x^{N}) \end{bmatrix}$$

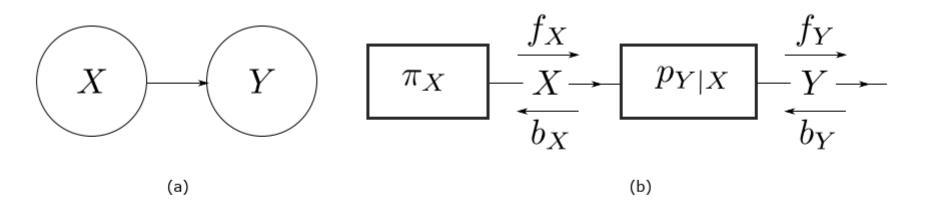


Figure 3.2: Graphical Representation of the relation between two random variables. (a) Bayesian Graph representation (b) Factor Graph representation

• Representation of the joint distribution $p_{XY}(x, y)$ as:

 $p_{XY}(x,y) = p_{Y|X}(y|x)\pi_X(x)$

• Functional Notation

 $p_{Y|X}(y|x)$

• Vector-Matrix Notation

$$\boldsymbol{p}_{Y|X} = \begin{bmatrix} Pr(Y = y^1 | X = x^1) & Pr(Y = y^2 | X = x^1) & \dots & Pr(Y = y^{N_Y} | X = x^1) \\ Pr(Y = y^1 | X = x^2) & Pr(Y = y^2 | X = x^2) & \dots & Pr(Y = y^{N_Y} | X = x^2) \\ \vdots & \vdots & \vdots & \vdots \\ Pr(Y = y^1 | X = x^{N_X}) & Pr(Y = y^2 | X = x^{N_X}) & \dots & Pr(Y = y^{N_Y} | X = x^{N_X}) \end{bmatrix}$$

$$\sum_{y \in \mathscr{Y}} \Pr\{Y = y | X = x^i\} = 1, \quad \forall i \in \{1, \dots, N_X\} \quad \text{Row-Stochastic}$$

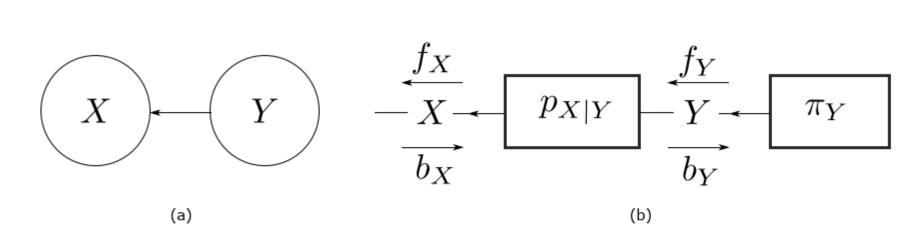


Figure 3.4: Graphical Representation of the relation between two random variables. (a) Bayesian representation (b) Factor Graph representation

• Representation of the joint distribution $p_{XY}(x, y)$ as:

 $p_{XY}(x,y) = p_{X|Y}(x|y)\pi_Y(y)$

- The choice of the graph and its directionality depends on the problem under study and computational convenience
- Evidence on a variable (i.e. $X = \bar{x}$) is depicted as a "shaded" node

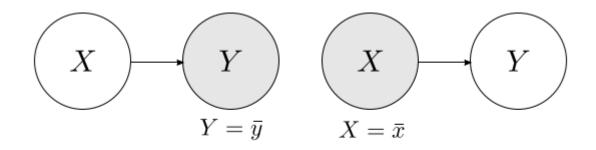


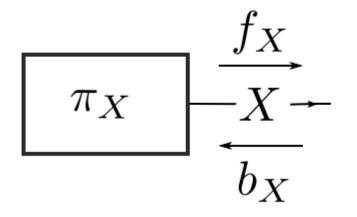
Figure 3.5: Evidence on variables

Variable

 f_X -X b_X

$p_X(x|evidence) = f_X(x)b_X(x)$

Source Block



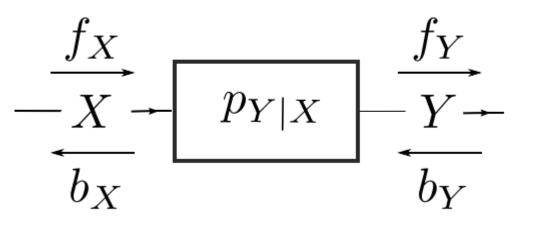
Functional notation:

$$\pi_X(x), \quad f_X(x) = \pi_X(x)$$

Vector notation:

$$\boldsymbol{\pi}_X, \quad \boldsymbol{f}_X = \boldsymbol{\pi}_X$$

SISO Block



Forward Flow

In functional notation:

$$f_Y(y) = \sum_{x \in \mathscr{X}} p_{Y|X}(y|x) f_X(x)$$

In vector-matrix notation:

$$\boldsymbol{f}_{\boldsymbol{Y}} = \boldsymbol{P}_{\boldsymbol{Y}|\boldsymbol{X}}^{T} \boldsymbol{f}_{\boldsymbol{X}}$$

Backward Flow

In functional notation:

$$b_X(x) = \sum_{y \in \mathscr{Y}} p_{Y|X}(y|x) b_Y(y)$$

In vector-matrix notation:

 $\boldsymbol{b}_Y = \boldsymbol{P}_{Y|X} \boldsymbol{b}_Y$

Examples with 2 Variables

Diverter

• Diverter or Equality constraint

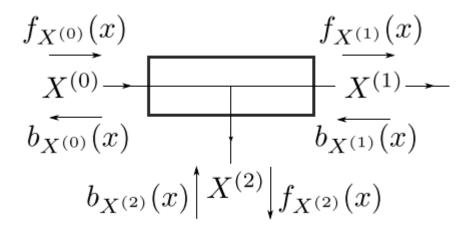


Figure 3.10: Diverter

$$\begin{array}{ll} f_{X^{(1)}}(x) & \propto f_{X^{(0)}}(x) b_{X^{(2)}}(x) \\ b_{X^{(0)}}(x) & \propto b_{X^{(2)}}(x) b_{X^{(1)}}(x) \\ f_{X^{(2)}}(x) & \propto b_{X^{(1)}}(x) f_{X^{(0)}}(x) \end{array}$$

Examples with 2 Variables + Diverter

Smooth Evidence

- In many applications we mainly have available only approximate inference about a variable $f_X(x) = \pi_X(x)$
- We can compute the average posterior

$$b_X(x) \propto \sum_{y \in \mathscr{Y}} p_{Y|X}(y|x) \underbrace{b_Y(y)}_{\text{evidence}}$$

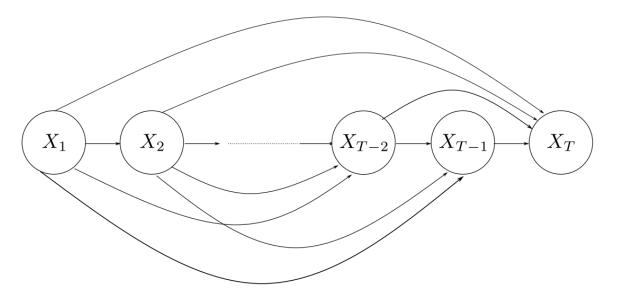
$$p_X(x) \propto f_X(x) b_X(x) = \pi_X(x)$$
 $\underbrace{b_X(x)}_{}$

summary of evidence $f_Y(y)$

 $p_{Y|X}$

More Random Variables

• Consider T random variables X_1, \ldots, X_T



• The joint distribution can always be factorized using the *chain rule* (we have used just one of conditioning orders):

$$p_{X_1X_2...X_T}(x_1, x_2, ..., x_T) = p_{X_T|X_{T-1}...X_1}(x_T|x_{T-1}, ..., x_1) p_{X_{T-1}|X_{T-2}...X_1}(x_{T-1}|x_{T-2}, ..., x_1) \dots p_{X_3|X_2X_1}(x_3|x_2, x_1) p_{X_2|X_1}(x_2|x_1) p_{X_1}(x_1)$$

Markov Chain - 1

 Markov chain is a system in which we are given a time order for the variables

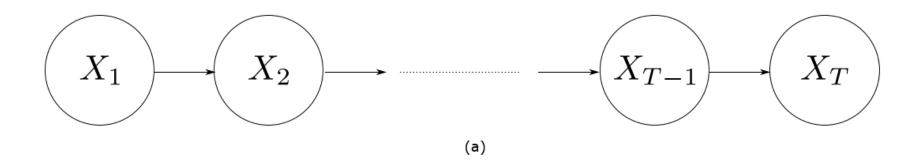
$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \ldots \rightarrow X_T$$

• Conditioning can be limited to the previous variable

$$p_{X_1X_2...X_T}(x_1, x_2, ..., x_T) = p_{X_T|X_{T-1}}(x_T|x_{T-1})p_{X_{T-1}|X_{T-2}}(x_{T-1}|x_{T-2})$$

... $p_{X_3|X_2}(x_3|x_2)p_{X_2|X_1}(x_2|x_1)p_{X_1}(x_1)$

Markov Chain - 2



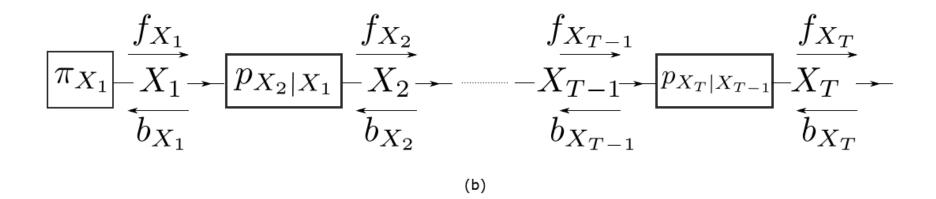


Figure 3.12: Markov Chain. (a) Bayesian representation (b) Factor Graph representation

$$p_{X_1X_2...X_T}(x_1, x_2, ..., x_T) = p_{X_T|X_{T-1}}(x_T|x_{T-1})p_{X_{T-1}|X_{T-2}}(x_{T-1}|x_{T-2})$$

... $p_{X_3|X_2}(x_3|x_2)p_{X_2|X_1}(x_2|x_1)p_{X_1}(x_1)$

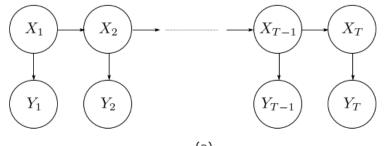
Markov Chain - 3

• Total characterization requires knowledge of the distributions:

$$\{\pi_{X_1}, p_{X_2|X_1}, p_{X_3|X_2}, \dots p_{X_T|X_{T-1}}\}$$

- Time invariant if: $p_{X_2|X_1}(\xi, \mu) = p_{X_3|X_2}(\xi, \mu) = \ldots = p_{X_T|X_{T-1}}(\xi, \mu)$
- It time invariant, $p_{X_t|X_{t-1}}(x_t|x_{t-1})$ and $\pi_{X_1}(x_1)$ are sufficient to characterize the model

Hidden Markov Model - 1



(a)

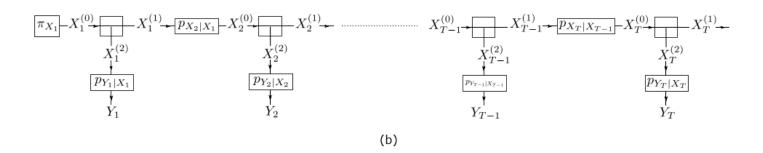


Figure 3.22: Hidden Markov Model: (a) Bayesian Graph; (b) Factor Graph

$$p_{X_1...X_TY_1...Y_T}(x_1,...,x_T,y_1,...,y_T) = p_{X_T|X_{T-1}}(x_T|x_{T-1})p_{X_{T-1}|X_{T-2}}(x_{T-1}|x_{T-2})...p_{X_3|X_2}(x_3|x_2)p_{X_2|X_1}(x_2|x_1)p_{X_1}(x_1)$$
(3.38)
$$p_{Y_1|X_1}(y_1|x_1)p_{Y_2|X_2}(y_2|x_2)...p_{Y_T|X_T}(y_T|x_T)$$

or more synthetically:

$$p_{X_1...X_T} (x_1, \dots, x_T, y_1, \dots, y_T) = p_{X_1}(x_1) \prod_{t=2}^T p_{X_t|X_{t-1}}(x_t|x_{t-1}) \prod_{t=1}^T p_{Y_t|X_t}(y_t|x_t)$$
(3.39)

Hidden Markov Model - 2

- This model is often used to represent non-observable states, assuming that variables Y_1, \ldots, Y_N are the observables.
- HMM are very popular in a very large number of applications that go from the text classification to tracking

Examples on Markov Chain with 4 variables

Latent Variable Model - 1

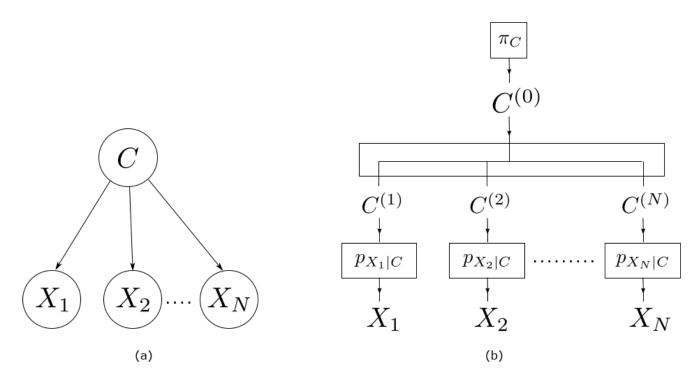


Figure 3.15: Graphical representation of Latent Variable Model as (a) Bayesian Network (b) Factor Graph

 $p_{X_1X_2...X_NC}(x_1, x_2, ..., x_N, c) = p_{X_1|C}(x_1|c)p_{X_2|C}(x_2|c) \dots p_{X_N|C}(x_N|c)p_C(c)$ $X_1, X_2, \dots, X_N \text{ are conditionally independent given } C.$

Examples on LVM + Sensor Fusion on Matlab

Variables with more than one parent - 1

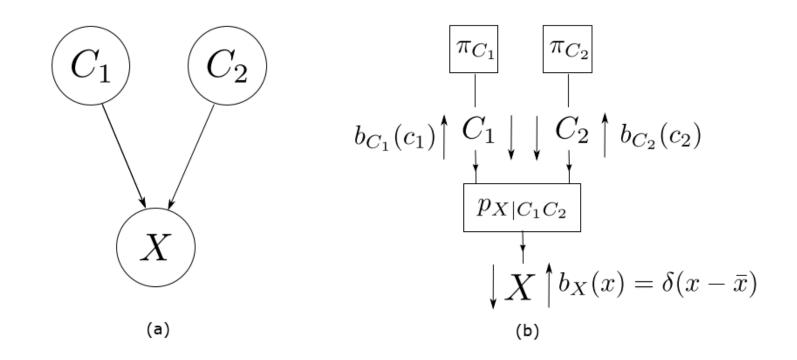


Figure 3.19: Married Variables: (a) Bayesian Graph, (b) Factor Graph

 $p_{XC_1C_2}(x,c_1,c_2) = p_{X|C_1C_2}(x|c_1,c_2)p_{C_1}(c_1)p_{C_2}(c_2)$

Variables with more than one parent - 2

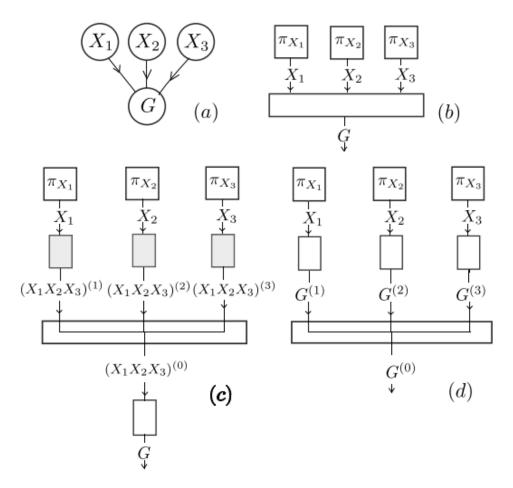


Fig. 3. (a) Bayesian-directed graph for three parents with a single child. (b) Equivalent FGn. (c) Equivalent FGrn with the inclusion of the productspace variable. (d) Simplified FGn that is not necessarily equivalent the graph shown in (a).

Image from Palmieri, "A Comparison of Algorithms for Learning Hidden Variables in Bayesian Factor Graphs in Reduced Normal Form", 2015

Derivation of matrix of Shaded Blocks

Examples of Burglary - Earthquake

Example: Los Angeles Burglar Alarm

- I have a burglar alarm that is sometimes set off by minor earthquakes. My two
 neighbors, John and Mary, promised to call me at work if they hear the alarm
 - Example inference task: suppose Mary calls and John doesn't call. What is the probability of a burglary?
- What are the random variables?
 - Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- What are the direct influence relationships?
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - · The alarm can cause Mary to call
 - The alarm can cause John to call

