
Bayesian Networks
Course of Signal Processing and Data Fusion

A.A. 2021-2022



• Represent the “World” as a set of Random Variables and the

Joint Distribution

• Represent, graphically, the independence/dependence relations among

Random Variables

Probabilistic Graphical Models
Key Idea

𝑋1, … , 𝑋𝑁

𝑃𝑋1,…,𝑋𝑁(𝑥1, … , 𝑥𝑁)



Bayesian Networks

Slide from “Pattern recognition and Machine Learning”, M. Bishop

Chain Rule

• Nodes: Random Variables
• Edges: Dependences
• No directed cycles

• We have chosen a particular ordering
• Different ordering→ different

decomposition→ different graphical
representation



• Specify, independently, all entries of                                    , with      binary
variables, requires O(2^N) space

• Computing marginal of                requires to sum over 2^(N-1) states of 
other variables:

• The key idea is to specify which variables are independent of others, 
leading to a structured factorization of the joint probability distribution

𝑃𝑋𝑖(𝑥𝑖) =෍

~𝑥𝑖

𝑃𝑋1,…𝑋𝑁(𝑥1, … , 𝑥𝑁)

𝑃𝑋𝑖(𝑥𝑖)

𝑃𝑋1,…,𝑋𝑁(𝑥1, … , 𝑥𝑁)

The benefits of structure

Text adapted  from “Bayesian Reasoning and Machine Learning”, D. Barber

𝑋𝑖



Bayesian Networks

Slide from “Pattern recognition and Machine Learning”, M. Bishop

It is the absence of links that conveys interesting information



Wet Grass Example - 1

Text adapted from “Bayesian Reasoning and Machine Learning”, D. Barber

Chain Rule



Wet Grass Example - 2

Text adapted from “Bayesian Reasoning and Machine Learning”, D. Barber

8 4 2 1

For a distribution of N binary variables, we need to specify 2^(N)-1 values in range [0,1]



Wet Grass Example - 3

Text adapted from “Bayesian Reasoning and Machine Learning”, D. Barber

We can make some conditional indipendence assumption

4 2 1 1



Image from : “Computer Vision:  Models, Learning, and Inference”, S. Prince

Example
Factorization



Learning Inference

Observed Data

Example
Asbestos-Cancer-Smoke

A,S
C

False True

False, False 1 0

False, True ½ ½

True, False ½ ½

True, True 0 1



• Consider a discrete single Random Variable

• Take values in a finite sample space

• A generic value of the Random Variable:

• Random Variable distributed as :

𝑋

𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁

𝑥

𝑋~𝜋𝑋 𝑥𝜋𝑥(𝑥)

Single Random Variable - 1 



• Functional Notation

• Vector Notation

𝑓𝑋 𝑥 , 𝑏𝑋 𝑥 , 𝑝𝑋 𝑥

𝒇𝑿 =

𝑓𝑋 𝑥1

𝑓𝑋 𝑥2
…

𝑓𝑋 𝑥𝑁
𝒃𝑿 =

𝑏𝑋 𝑥1

𝑏𝑋 𝑥2
…

𝑏𝑋 𝑥𝑁
𝒑𝑿 =

𝑝𝑋 𝑥1

𝑝𝑋 𝑥2
…

𝑝𝑋 𝑥𝑁

Single Random Variable - 2 



• Representation of the joint distribution as:  𝑝𝑋𝑌 𝑥, 𝑦

Two Random Variables - 1



• Functional Notation

• Vector-Matrix Notation

𝑝𝑌|𝑋 𝑦|𝑥

𝒑𝑌|𝑋 =

𝑃𝑟 𝑌 = 𝑦1|𝑋 = 𝑥1 𝑃𝑟 𝑌 = 𝑦2|𝑋 = 𝑥1 … 𝑃𝑟 𝑌 = 𝑦𝑁𝑌|𝑋 = 𝑥1

𝑃𝑟 𝑌 = 𝑦1|𝑋 = 𝑥2 𝑃𝑟 𝑌 = 𝑦2|𝑋 = 𝑥2 … 𝑃𝑟 𝑌 = 𝑦𝑁𝑌|𝑋 = 𝑥2

⋮
𝑃𝑟 𝑌 = 𝑦1|𝑋 = 𝑥𝑁𝑋

⋮
𝑃𝑟 𝑌 = 𝑦2|𝑋 = 𝑥𝑁𝑋

⋮
…

⋮
𝑃𝑟 𝑌 = 𝑦𝑁𝑌|𝑋 = 𝑥𝑁𝑋

Two Random Variables - 2

Row-Stochastic



• Representation of the joint distribution as:  𝑝𝑋𝑌 𝑥, 𝑦

Two Random Variables - 3



• The choice of the graph and its directionality depends on the problem 
under study and computational convenience

• Evidence on a variable (i.e.             ) is depicted as a “shaded” node 𝑋 = ҧ𝑥

Two Random Variables - 4



Variable

𝑝𝑋 𝑥 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 = 𝑓𝑋 𝑥 𝑏𝑋 𝑥



Source Block



Forward Flow Backward Flow

SISO Block



Examples with 2 Variables



• Diverter or Equality constraint

Diverter



Examples with 2 Variables + Diverter



• In many applications we mainly have available only approximate 
inference about a variable

• We can compute the average posterior

Smooth Evidence



More Random Variables

• Consider T random variables

• The joint distribution can always be factorized using the chain rule 
(we have used just one of conditioning orders): 

𝑋1, … , 𝑋𝑇



Markov Chain - 1

• Markov chain is a system in which we are given a time order for the 
variables

• Conditioning can be limited to the previous variable



Markov Chain - 2



Markov Chain - 3

• Total characterization requires knowledge of the distributions:

• Time invariant if:

• It time invariant,                              and              are sufficient to 
characterize the model              



Hidden Markov Model - 1



Hidden Markov Model - 2

• This model is often used to represent non-observable states, 
assuming that variables                           are the observables. 

• HMM are very popular in a very large number of applications that go 
from the text classification to tracking

𝑌1, … , 𝑌𝑁



Examples on Markov Chain with 4 variables



Latent Variable Model - 1



Examples on LVM + Sensor Fusion on Matlab



Variables with more than one parent - 1



Variables with more than one parent - 2

Image from Palmieri, “A Comparison of Algorithms for Learning Hidden Variables in Bayesian Factor Graphs in Reduced Normal Form”, 2015



Derivation of matrix of Shaded Blocks



Examples of Burglary - Earthquake



Slide from CS440/ECE448 Lecture 15: Bayesian Networks - Mark Hasegawa-Johnson, Univ of Illinois



Slide from CS440/ECE448 Lecture 15: Bayesian Networks - Mark Hasegawa-Johnson, Univ of Illinois


