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Probabilistic Graphical Models

Key ldea

* Represent the “World” as a set of Random Variables X1,---,Xny and the
Joint Distribution Py x. (X1,..,Xy)

* Represent, graphically, the independence/dependence relations among
Random Variables



Bayesian Networks
Directed Acyclic Graph (DAG)

a
b
* Nodes: Random Variables
We have chosen a particular ordering * Edges: Dependences
Different ordering = different * No directed cycles

decomposition = different graphical
representation

p(a, b, c) = p(cla, b)p(a,b) = p(c|a, b)p(bla)p(a)
Chain Rule
DB 5000y B8) SEPABR T 5000 s TR oD 2B ]2 1 JDEZT)

Slide from “Pattern recognition and Machine Learning”, M. Bishop




The benefits of structure

* Specify, independently, all entries of Py, x. (X1,...,Xy), With X; binary
variables, requires O(2*N) space

 Computing marginal of PX,; (x;) requires to sum over 2*(N-1) states of
other variables:

Pxi(xi) = 2 Py, . xn (X1, s XN)
* The key idea is to specify which variables are independent of others,
leading to a structured factorization of the joint probability distribution

Text adapted from “Bayesian Reasoning and Machine Learning”, D. Barber




Bayesian Networks

p(x1,...,27) = plx1)p(z2)p(x3)p(xs|21, 22, T3)

p(xs|z1, x3)p(xe|Ta)P(27 |24, T5)
It is the absence of links that conveys interesting information

General Factorization

.
p(x) = [ plxlpay)
k=1

Slide from “Pattern recognition and Machine Learning”, M. Bishop




Wet Grass Example - 1

One morning Tracey leaves her house and realises that her grass is wet. Is it due to overnight rain or did
she forget to turn off the sprinkler last night? Next she notices that the grass of her neighbour, Jack, is also
wet. This explains away to some extent the possibility that her sprinkler was left on, and she concludes

therefore that it has probably been raining.

A model of Tracey’s world then corresponds to a probability distribution on the joint set of the variables of
interest p(T', J, R, S) (the order of the variables is irrelevant).

R € {0,1} R =1 means that it has been raining, and 0 otherwise

S e {0,1} S =1 means that Tracey has forgotten to turn off the sprinkler, and 0 otherwise
J €{0,1} J =1 means that Jack’s grass is wet, and 0 otherwise

T e {0,1} T =1 means that Tracey’s Grass is wet, and 0 otherwise

p(T,J.R,S) = p(T|J,R,S)p(J.R,S)
p(T|J, R, S)p(J|R, S)p(R, S) Chain Rule
= p(T|J, R, S)p(J|R, S)p(R|S)p(S)

Text adapted from “Bayesian Reasoning and Machine Learning”, D. Barber




Wet Grass Example - 2

p(T.J,R,S) = p(T|J, R, S)p(J, R, S)
= p(T|J, R, S)p(J|R, S)p(R, S)
= p(T'|J, R, S)p(J|R, S)p(R[S)p(S)

3 4 2 1

p(T|J, R, S) requires us to specify 2% = 8 values — we need p(T = 1|J, R, S) for the 8 joint states of J, R, S.

The other value p(T" = 0|J, R, S) is given by normalisation : p(T = 0|J,R,S) = 1 — p(T = 1|J,R,S)

For a distribution of N binary variables, we need to specify 2*(N)-1 values in range [0,1]

Text adapted from “Bayesian Reasoning and Machine Learning”, D. Barber




We can make some conditional indipendence assumption

Wet Grass Example - 3

p(T|J,R,S) =p(T|R,S)

p(J|R,S) = p(J|R)

R e {0,1}
S e {0,1}
J € {0,1}
T € {0,1}

p(R|S) = p(R)

R = 1 means that it has been raining, and 0 otherwise

S = 1 means that Tracey has forgotten to turn off the sprinkler, and 0 otherwise

J = 1 means that Jack’s grass i1s wet, and 0 otherwise
T = 1 means that Tracey’s Grass is wet, and 0 otherwise

mm) p(7,J,R,S) = p(T|R, S)p(J|R)p(R)p(S)

rd rd e
4 2 1 1

Text adapted from “Bayesian Reasoning and Machine Learning”, D. Barber




Example
Factorization

Pr(x1...715) = Pr(xz1)Pr(xe)Pr(xs)Pr(x4|ley, x2)Pr(rs|re) Pr(xe)
Pr(x7)Pr(xs|ry, x5)Pr(xo|les, xe) Pr(xio|rr) Pr(ziy |y, x8)

Pr(xio|xs)Pr(xi3|re) Pr(xi4|a1) Pr(xis|Tis).

Image from : “Computer Vision: Models, Learning, and Inference”, S. Prince




Example
Asbestos-Cancer-Smoke

P(A. S, C) = p(C|A,S) p(A) p(S)

False True
— = False, False 1 0
Observed Data 10 False, True % %
11 True, False % Y
A|lS| C 122 '
1 1 1 f}(C‘|AJS) — 1 1 True, True 0 1
1 0 0 ?]?f
0 1 1 Learning i | Inference
o] —) ) p(A=1C=1,5=0)=1
111 _. |3 4]
00| 0 p(4) = 7 7]
1 0 1
. 4
P(S) — % i




Single Random Variable - 1

* Consider a discrete single Random Variable X

* Take values in a finite sample space X = {x1, x?, ..., xN}
* A generic value of the Random Variable: x

e Random Variable distributed as T, (x) : X~mx(x)

fx

¢ _X .

bX

(a) (b)

Figure 3.1: Graphical Representation of the Variable. (a) Bayesian representation (b) Factor Graph
representation



Single Random Variable - 2

» Functional Notation

fx (x), bx (x), px (x)
» Vector Notation
fr(x) by (x) px(x?)
fx =G| by =[bxG*) | py=|px(x?)
fx(x™). by (xN)_ px (x")_




Two Random Variables - 1

fx fy
™ —X— PY|IX YV —
bx by
(a) (b)

Figure 3.2: Graphical Representation of the relation between two random variables. (a) Bayesian
Graph representation (b) Factor Graph representation

* Representation of the joint distribution Pxy (x,¥) as:

pxy (x,y) = Py|x (¥ x)Tx (x)



Two Random Variables - 2

 Functional Notation

Pyx (V]x)
* Vector-Matrix Notation
Pr(Y =yl X=x") Pr(Y=y*X=xY) .. Pr¥=y"|X=x')]
Pyix = Pr(Y = y;1|X =x?) Pr(Y = y:ZIX = x2) - Pr(Y = yl\:/y|X = x2)
Pr(y = y'X = %) Pr(y = y2|X = xMx) . Pr(Y = yM|X = xVr)

Z PF{Y — };‘X :Xi} — 1.} Vi - {lf . o 3NX} Row-Stochastic

ye¥



Two Random Variables - 3

Ix 8%
— X <1 PX|ly YV -] Ty
bx bY}
(a) (b)

Figure 3.4: Graphical Representation of the relation between two random variables. (a) Bayesian
representation (b) Factor Graph representation

* Representation of the joint distribution pyy(x,y) as:

pxy(x.y) = .UX|}’(I y)Ty (y)



Two Random Variables - 4

* The choice of the graph and its directionality depends on the problem
under study and computational convenience

e Evidence on a variable (i.e. X = x) is depicted as a “shaded” node

Y =19 X ==z

Figure 3.5: Evidence on variables



Variable

Ix
_X__.._

bx

px(x|evidence) = fx(x)bx(x)



Source Block

Functional notation:

y(x),  fx(x) =7y (x)

Vector notation:

x, fx=7mx



SISO Block

Ix Jy
— X —| Py|x —Y—

bx by
Forward Flow Backward Flow
In functional notation: In functional notation:
) =Y prx(x)fx(x) bx(x) =Y pyix(y[x)by (y)
xe 2 ye¥
In vector-matrix notation: In vector-matrix notation:

fr :Paxfx by :PYIXbY



Examples with 2 Variables



Diverter

* Diverter or Equality constraint

fxo () fxo ()
X (0) — X (1) —
b);'(ﬂ} (;’E) i b;(lj (:I’)

bx () ‘ X[:Q}].fX{QJ ()

Figure 3.10: Diverter

fxm(x) o< fyo(X)byw) (x)
by)(X) o< by (x)byn)(x)
fxi2)(x) o< by (%) o) (%)



Examples with 2 Variables + Diverter



Smooth Evidence

* In many applications we mainly have available only approximate
inference about a variable

* We can compute the dverage posterior
TX X —] Pyix Y —

Y pe(x|Y = )by (y) = Eypy () [ox (x]Y = )] . N

ye¥

bx (x) o< }Ezf,ypnx (vlx) w

evidence

px (x) o< fx (x)bx (x) = mx (x) bx(x)
——

summary
of evidence



More Random Variables

* Consider T random variables X,, ..., X+

* The joint distribution can always be factorized using the chain rule
(we have used just one of conditioning orders):

PX\X>.. Xt (Il s X2, '“t-]:T) — PXT|XT_1...X1 (ITl-’tT—l y *“'.'xl)pXT_”XT_g...Xl (IT—] |IT—2= '“3-'}:])
P33, (X3]x2,X1) Py x, (x2]x1) px, (1)



Markov Chain - 1

 Markov chain is a system in which we are given a time order for the
variables

X/ X—>X53—>...2Xr

* Conditioning can be limited to the previous variable

PX X>.. X7 (Il y X2, “':-XT) — pXﬂXT_[ (;’CT ‘XT_] )pXT_l X172 (XT_l |.'?CT_2)
o Pxax, (X3]X2) Py x, (X2 |x1) px, (x1)



Markov Chain - 2

(a)

fX1 fXQ fXT—l fXT
Ter_Xl—*—pXQIXl —XQ—"— """"""""" —XT_l—*—pXTIXT—l—XT —
le bXQ bXT—l bXT

(b)

Figure 3.12: Markov Chain. (a) Bayesian representation (b) Factor Graph representation

pXIXZ»“XT (Xl ax2:~ “'?XT) — pXﬂXT_] (XT ‘xT_l)pXT_l |XT_2 (xT—l |.}’CT_2)
o Dx3 X, (43 |X2) Py 1x, (X2]x1) px, (1)



Markov Chain - 3

* Total characterization requires knowledge of the distributions:

{EX1 :leg|X] :'pX3|X2:I -t 'pXﬂXT_l}

e Time invariant if: Px|x, (G, ) = PXﬂX;;(&aH) = oo = PXr|Xr_ (G 1)

e It time invariant, Px|x,_, (X:|X—1) and 7x, (x1) are sufficient to
characterize the model



Hidden Markov Model - 1

)

0 1) (0 (1 ,- (1) ( -
Xl(i—li'—.‘f;{ : X,_;Efxé e x. X—,-i..’{?‘f]) XM
)

x® X2 ¥ (2 -(2)
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P LS
Y,l }/2 YT_ 1 1’71"

(b)
Figure 3.22: Hidden Markov Model: (a) Bayesian Graph; (b) Factor Graph
pxl...Xrﬂ...YT(xl:--':xT:yla---:}"‘T): PXﬂXT_.(«‘JT\IT—QPXT_.|XT_3(XT—1\xT—z)--—

Px.|x, (X3]%2) Pxy x, (x2]X1) px, (x1) (3.38)
Py, |x, (v1]x1 }Pnp@ (v2|x2) ... Pyr|xr (yr|xr)

or more synthetically:

T T
Pxy. Xe¥y. Yr (K15 s X7, V15, Y1) = px, (X1) l_[pX;|X;_| (xr \xr—l)npmxf (Ve
=1

=2

Fa

Xt ) (3.39)



Hidden Markov Model - 2

* This model is often used to represent non-observable states,
assuming that variables Yj,...,Yy arethe observables.

* HMM are very popular in a very large number of applications that go
from the text classification to tracking



Examples on Markov Chain with 4 variables



Latent Variable Model - 1

el

'(0)

|
\ oW o) o)

}
Px,|C PXo|C | rreereens Pxy|C

) (- A
X1 X9 XN

(a) (b)

Figure 3.15: Graphical representation of Latent Variable Model as (a) Bayesian Network (b) Factor
Graph

PXIXE...XNC(XI;X%---:XN:C) — PX1|C(x1|C)ng|C(X2‘C)“-PXN|C(XN‘C)PC(C)

X1,X2,... Xy are conditionully independent given C.



Examples on LVM + Sensor Fusion on Matlab



Variables with more than one parent - 1

@ EE
| \

be, ((11)T C 1 l (f? T be, (c2)

Px|C,04

*
lX Tbx(:,r:) = §(x — )

(a) (b)

Figure 3.19: Married Variables: (a) Bayesian Graph, (b) Factor Graph

pxc,c, (x,c1,¢2) = pxic,c, (x|c1,¢2) pe, (c1) pe, (¢2)



Variables with more than one parent - 2
e @ @ x| [rx] [

} ) Ve

@) @ [ )
G
o+
TX, X ?-'.'{:5 frx, 'JTXZ X3
X1 X X3) W (X1 X2 X3)(2) (X, Xz)«.j )3) E,;[ G2 [?}
| - | |
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() v (d)
I
G
W

Fig. 3. (a) Bayesian-directed graph for three parents with a single child.
(b) Equivalent FGn. (c) Equivalent FGrn with the inclusion of the product-
space variable. (d) Simplified FGn that is not necessarily equivalent the graph
shown in (a).

Image from Palmieri, “A Comparison of Algorithms for Learning Hidden Variables in Bayesian Factor Graphs in Reduced Normal Form”, 2015




Derivation of matrix of Shaded Blocks



Examples of Burglary - Earthqguake



Example: Los Angeles Burglar Alarm

* | have a burglar alarm that is sometimes set off by minor earthquakes. My two
neighbors, John and Mary, promised to call me at work if they hear the alarm
* Example inference task: suppose Mary calls and John doesn’t call. What is the probability of a

burglary?
* What are the random variables?

* Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

* What are the direct influence relationships?
* Aburglar can set the alarm off
* An earthquake can set the alarm off
* The alarm can cause Mary to call
* The alarm can cause John to call

Slide from CS440/ECE448 Lecture 15: Bayesian Networks - Mark Hasegawa-Johnson, Univ of lllinois




Example: Burglar Alarm P(E)

P(B) P(E)
P(B) (Burglary )™ oo 002
B E [P(ABE)
T T 95
T F| .94 P(A|B,E)
FoT| 29
FF | .00l

P(M|A)

P(J|A) P(J|A) A [P(M|A)

Pl 05

.70
01

1 —

Slide from CS440/ECE448 Lecture 15: Bayesian Networks - Mark Hasegawa-Johnson, Univ of lllinois




