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Improving the transmission
reliability: Block codes

Designers of primitive digital communication systems sou.gh! to obtain loy bit
cnorgprobabil‘i’:cs by transmitting at high power or by using larger bmdw:ﬁt;
than strictly necessary. This approach is adequgxe if the required error pmtmbwth d
is not too low and/or the data rate is :‘ol:ogdl::hgh: ;t;:’y; performance wi
st ious of resources: spectral width an -
8 T:emlc&cson taught by Shannon (see Section 3.3) was that high perfom:m:e
is indeed obtainable by calling a third resource into pll.y. the sxsu:m comp} xity.
The concurrence of two basic facts, i.¢., the sky-rocketing mqmmm;:m trans-
mission speed and the affordability, thanks 1o the modem electronic I:g.y
of extremely sophisticated receivers has made the.Shannon dream a:e leve:y”d iz
reality, so that highly complex co-deoodlu:gm: are now widely
igi ission systems to protect the in K B

d1gl'!l“::cl:;:li::t?:sto conytsxol the error probability are based on the additon of re-
dundancy to the information sequence. deitionally.. codes aimed at |mptovmi§
the transmission reliability are called error correcting codes. This wmq::.ch
bound toapaniculsopemingmodcofme demodulalormddecoc::m v;t_n
the received signal sequence is hard-detected by the demodulator, before ld:
transferred to the decoder. As a consequence, the binary sequence emet'mg-n.lis
decodaconminsam:sumu:decodcrmayormynotbea!?k tqcol:::’t.' :
mode of operation, however, auailssomedegxeep(subopumaluy. d;v':s
placed, whenever feasible, by sofi-decoding, in which the dcmodulalor

the sufficient statistics in analog or quantized fom_l. and supplm.n to th? decoderm
which, in turn, performs the final task of estimating the :rmsmmed in ormau" -
sequence. When this is the operation mode, talking of “error correcting

452

10.1. A taxonomy of channel codes 453

u CHANNEL x
SOURCE > > MODULATOR

ENCODER

R, R/R
bit/s symbol/s
CHANNEL
CHANNEL | Y
USER DECODER DEMODULATOR f=—

Figure 10.1: Block diagram of a transmission system employing channel coding.

does not make sense, since no true correction of error takes place, but, rather, the
pair encoder-decoder prevents errors from occurring. In this situation, it would
better to talk of error control codes (see Blahut, 1983). Most of the algorithms
for decoding free codes make use of the soft information in a straightforward
manner. The use of soft-decision in block codes is somewhat more involved and
generally requires significant changes in the decoding algorithms.

For the reasons previously explained, we will generally speak of codes that
improve the transmission reliability, or of channel codes, in the sense that these
codes aim at protecting the information from impairments occurring during its
transmission over the channel.

In this chapter, we will first propose a taxonomy of the codes employed to
protect the transmitted information, and then define and analyze linear block

codes. In the next chapter, we will consider convolutional and concatenated
codes.

10.1. A taxonomy of channel codes

Consider the simple block diagram of Fig. 10.1. Using the terminology of Blahut
(1983), we distinguish a source producing a binary sequence, the data stream: it
is the binary sequence emitted directly by the source, or by the source encoder.
We assume that it is formed by independent identically distributed (iid) binary
random variables (RVs). The data stream enters the channel encoder which maps
it into a code stream. For constructing the code, additional structure may be de-
fined on the data stream by segmenting it into pieces called data words. Like-
wise, the code stream is segmented into pieces called code words. For an (n, k)
block code, the data words consist of k bits and the code words of n bits. A
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channel code C is the set of 2* n-tuples of bits, the code words x. An encoder E
is the set of the 2* pairs (u, x), where u is a data word, 1.¢., a £-tuple of bits, and
x the corresponding code word. These definitions should clarify the fundamenta]
difference between the notion of a code and the notion of an encoder. The code
is a collection of code words and is independent of the way they are obtained.
The term encoder refers to the one-to-one correspondence between data words
and code words, and also applies to the device that implements this assignment.
With respect to how the encoder assigns code words to data words, we say that
the (n, k) code is a block code when the encoder is memoryless, i.e., when to the
same k bits in the data word there correspond the same n code word bits. The

block code is an (n, k) code, and the ratio /i, = k/n is the rare of the code. Each
data word (block) is encoded independently without interaction with earlier or
later data words. When the correspondence between daia words and code words
has memory, i.¢., the n bits of the code word do not depend only on the & bits
of the data word, but also on some previous data words, we say that the code
is a tree code. In this case, it is often convenient to think of infinitely long data
streams and code streams, or sequences, which start at time zero and continue
indefinitely in the future. A tree code breaks the data stream into segments called
data frames, each consisting of k, data bits, ky normally a small integer. The en-
coder is a finite-state machine that retains some memory of earlier data frames;
in the simplest case, it simply stores the m most recent data frames unchanged.
A single code frame consists of ny bits that are computed from the mk; data bits
of the m data frames stored in the encoder memory, and the ky bits of the incom-
ing data frame; these n bits are shifted out to the channel as the new kg data bits
enter the encoder. The ratio K. £ kq/ny is still called the code rate.  Tree codes
with a special memory and linearity structure, to be defined in the next chapter,
are called convolurional codes.

With respect to the properties of the set of code words, we distinguish be-
tween linegr and nonlinear codes. For a linear code, the set of code words (or
code streams, for tree codes) is closed under component-wise modulo-2 addition,
an operation denoted simply by "+" in this chapter.' This property has several
important implications that will be made clear in the next sections.  According
to how the system makes use of the code capabilities, we distinguish between
error detecring and error correcting codes. This doss not represent a distinction
between the codes themselves, but, rather, between the strategies followed by the
system.

Two different strategies can be used in the channel decoder. Conceptually,

!Modulo-2 addition can also be defined as the addition operation in the Galois field GF(2).
Since it is beyond the scope of this book to introduce Galois fields, we will always speak of
module-2 addition.
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these stralegies can be related to Fano's inequality (see Chapter 3, (3.67)). In the
first strategy, the decoder observes the hardly-demodulated received sequence
:md detects whether or not errors have occurred. A certain measure of uncertainty
is eliminated, which corresponds to the term H () in (3.67). Error detection is
used to implement one of two possible schemes: error menitoring or automatic
repeat request (ARQ). In the case of error monitoring, the decoder supplies to
the user a continuous indication regarding the quality of the received sequence,
so that, when the reliability becomes too low, the sequence can be discarded. In
the case of ARG, the transmitter is asked to repeat unsuccessful transmissions.
To this end, a feedback channel from the receiver to the transmitter must be
available.

The second strategy is called Jforward errar correction (FEC). The decoder
altempis to restore the correct transmitted sequence whenever errors are detected
in the received sequence. In this case, an additional quantity of uncertainty must
be removed corresponding to the term P(e) log(2% — 1) of (3.67). It is intuitive
that this strategy requires, for the same code, more complex decoding algorithms.
The choice between the two strategies depends on the particular application and
on the complexity of the transmission system considered. For example, the ARQ
scheme is usually applied in the communication between compulers, since a two-
way transmission channel is available together with large memory devices that
sForc the incoming information while performing, upon request, the retransmis-
sion procedure. On the other hand, FEC is adopted when the information must
be protected on a one-way channel, or when real-time, or strictly-controlled de-
!a:..rs are required. Examples pertain to deep-space communication and digitized
interactive voice transmission.

With respect to the encoder operations, we say that the encoder E is system-
aric when the first £ bits of each code word x coincide with the k bits of the data
word u. It is common in textbooks to say that a code, rather that its encoder,
is systematic. In the following, we too will sometimes indulge in this impreci-
sion. The reader is wamned, though, that the concept of systematicity entails the
mapping of data words into code words, and, thus, only pertains to the encoder.

To analyze the benefits due to channel encoding in comparison with the un-
coded schemes of Chapter 5, let us consider again the model of Fig. 10.1. The
source emits binary digits? at a rate of R, bit/s and the encoder represents each
data word of k source bits using n = k/ R, bits. R, is the code rate. To keep the
pace of the source, the transmission speed on the channel must be increased to
the value R,/H, binary symbols per second, and thus the required bandwidth
must also be increased by the same factor 1/R,. As a result, the use of chan-

_ 2S':ru:.e we make the assumption that the data stream is made of iid binary RY's (0 and 1), we
will use indifferently the words “bits” and “binary digits.”
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i i i the uncoded
| encoding decreases the bandwidth efficiency with respect Lo
ot s e e T byl et 5
encoder are presented to the m Y . . o
using one of the modulation schemes described in Chapter .
o e i G, 30D
i bi modulation over an . ; .

:h?::m;cﬂh mﬂ encoded symbol is mapped by thF mndulmnr m:a n:w I:::l;aryn
waveform of duration T =T = R./R, seconds. TITm du!'ahcn is s
that used in the uncoded case by a factor R.. pcnumg WIFl £y the m;:ﬁf ;:;
information bit, and assuming that the transmitted power is kept ]cm:hc ‘;a!ue
can conclude that coding decreases the energy per channel symbo t‘c;l he value
£, R.. As aresult, in case of hard decisions, more Fhannel s:,rm‘u:ls w:r-i ;Iabou:
rectly demodulated than with uncoded transmission. Thl.Tst 0 se:r:c rznm out
coding seem rather discouraging. In fact, bandwidth efficiency is cereased ind
more errors in the demodulated sequence are to be expected. ?:ngu]m; ina
well-designed coded system, the larger number o_f errors at lha rr; e
put will be compensated for by the error-correcting c_apabﬂmc_s o he de bﬂm
Therefore, a coded transmission should trade blqdu_udm efficiency m_-mml
overall error performance, using the same Lransmission m'r;te o;,:;::m “ rji
for a smaller required power for a given eror performance. The
required power for the coded system is referred (o a5 coding gain.

Let us describe the processing that must take plas:c at the Chm‘l?uﬁi
achieve such a result. Consider first the case in which l:Iu.'. dcmudulat?rr |smi wed o
make decisions on whether each binary waveform carries a0 ora 1. :nd lpmd

. the demodulator output is quantized to two lrtvcls dmottd by ﬂ:he P
is said to make hard decisions. The sequence of binary digits f:;m e
ulator is fed into the decoder. The decoder attempts to recover :mcmﬁng
sequence by using the code word's redundancy for cither detecting or %
the errors that are present at the demodulator output. Sucha decoding pmcmr_
called hard-decision decoding. In this model, assuming a binary mulapl:rd:l
ent modulation and an AWGN channel, the cu'nhmfman of mOdIJS ,mha.lmel.mi-
and demodulator is equivalent to a binary symmeinc _mmm;m{ﬁﬂ%m e
tion probability is the error probability of a binary antipodal T prada on
(see Chapter 4). The ovemllqmrpca_-fm'ma:m nfrhcmdt?d e
the implementation of efficient algorithms for error detection .

Al the other extreme, consider the case in which the unqmﬁm_d output u-ﬂ:
the demodulator, the sufficient statistics, is fed to the decoder. Thlm:d sm
n outputs corresponding to each sequence of n binary waveforms pomaol
decision variables. With the optimum decision stratcgy,_thc cascaded 1 ]
lator and decoder perform the same operation as the optimum coheren demod

o m——
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ulator of Chapter 4, i.e., they choose the transmitted sequence corresponding
to the n-bit code word which is closest, in the sense of the Euclidean distance,
to the received sequence. Such a decoding process is called unguantized soft-
decision decoding. In this model, the combination of modulator, channel, and
demodulator is equivalent to a binary-input, continuous-output channel. It is in-
tuitive that this approach presents a higher reliability than that achieved with the
hard-decision scheme. In fact, the decoder can take advantage of the additional
information contained in the unquantized samples that represent each individual
binary transmitted waveform. An intermediate case, called soft-decision decod-

ing, is represented by a demodulator whose output is quantized 1o Q levels, with

& > 2. In this case, the combination of modulator, channel, and demodulator is

equivalent to a binary input, @-ary output discrete channel. The advantage over

the analog (unquantized) case is that all the processing can be accomplished with
digital circuitry. Therefore, it represents an approximation of the unquantized
soft-decision decoding.

The advantage of a coded transmission scheme over an uncoded one is usu-
ally measured by its coding gain. This is defined as the difference (in decibels)
in the required value of £,/ to achieve a given bit error probability between
a binary antipodal uncoded transmission and the encoded one. This concept is
represented qualitatively in Fig. 10.2, where we plot the two curves expressing
the bit error probability Fy(e) versus the signal-to-noise ratio per bit £,/Ny for
the uncoded and encoded systems. The typical behavior of the two curves of
Figure 10.2 suggests two considerations:

s The coding gain, which depends on the value of the bit error probability
{and thus on the signal-to-noise ratio), increases with the signal-to-noise
ratio and tends (for £,/Ny — oo and hence for Fy(e) — 0) to an asymp-
totic value that will be evaluated later in the chapter.

» For low values of the signal-to-noise ratio, there can be a crossing between
the uncoded and coded curves, meaning that the coding gain becomes neg-
ative. In other words, there is a limit to what a code can do in terms of
improving a bad channel.

To quantitatively assess the limits of the coding gain, we have plotted in Fig-
ure 10.3 the curve of the binary uncoded antipodal scheme (curve A) with the two
channel capacity limits: the first (curve B), which tends to —1.6 dB, correspond-
ing to the infinite-bandwidth capacity limit and to soft-decision decoding. and
the second (curve C), which tends to 0.4 dB, the BSC capacity limit which refers
to a hard-decision demodulator. These limits had been evaluated in Section 3.3.

The regions between the uncoded curve and those of the capacity limits rep-
resent the region of potential coding gains. As an example, for a bit error proba-
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Figure 10.2: Typical behavior of the bit error probability versus bii signal-to-noise ratio
for uncoded and coded systems.
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Figure 10.3: Potential coding gains of coded transmission with respect to binary un-

coded antipodal transmission.

10.2.  Block codes 450

bility of 10~%, a potential coding gain of 11.2 dB is theoretically available in the
case of unquantized soft-decision decoding. Another limit, the cutoff: rate limit,
will be derived when analyzing the performance of coded transmission.

The fifty years that separate us from the channel coding theorem of Shannon
has seen a great research effort aiming at filling the channel coding gap through
the discovery of codes approaching the capacity limits. Until recently, these
efforts had been very successful up to the cutaff rate limit (see Section 10.4),
a couple of dB short of the capacity limit, but were unable to reach the region
between cutoff rate and capacity. As we shall see at the end of next chapter,
we now know a way to design codes that can approach to within 0.5 dB of the
coding gain promised by the capacity limit at bit error probabilities of 10~ to
10-7.

10.2. Block codes

We will consider mainly binary codes, i.e., codes for which both the data words
and the code words are formed by binary digits 0 and 1. This concept can be
extended to g-ary codes, and a particularly important case occurs when g = 2
is a power of 2, in this case, ¢ admits a binary representation with b bits, and the
(n, k) code of g-ary elements is equivalent to an (nb, kb) binary code.

The basic feature of block codes is that the block of n digits (code word)
generated by the encoder depends only on the comresponding block of k digits
generated by the source (data word). Therefore, the encoder is memoryless. A
great deal of block code theory is an extension of the notion of parity check. Take
a sequence of k binary digits. Transform it into a sequence of lengthn =k + 1
digits by simply adding in the last position a new binary digit, following the
rule that the number of ones in the new sequence must be even. This redundant
digit is called a parity-check digit. In this way, any error event on the channel
that changes the parity of the sequence from even to odd can be detected by the
decoder.

Parity-check codes are a particular class of block codes in which the digits
of the code word are a set of n panty checks performed on the & information
digits. The code is usually referred to as an (n, k) code. An encoder (or, simply,
a code) is called systematic when the first k digits in the code word are a replica
of the information digits in the data word, and the remaining (n — k) digits are
parity checks on the k information digits. Parity checks in binary sequences are
formally dealt with using modulo-2 arithmetic, in which the rules of ordinary
arithmetic hold true except that the sum (1 + 1) is 0, not 2. Throughout this chap-
ter, modulo-2 arithmetic will be used unless otherwise specified. A functional
block diagram of the encoder is shown in Fig. 10.4. It consists of a k-stage in-
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the two registers are different, the output rate being higher by a
following simple examples will clarify these concepts.

le 10.1 Repetition code (3, 1) '
inthl:‘s'::ode. each code word of length n = 3 is defined by the relations

10.1)
zy =y, T3=Uy, F3=W (

The encoder is sketched in Fig.10.5. Obviously, the adders are omitted in this case
resulting repetition encoder is defined by the comespondence
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Y

Xy | X | Xy p—om

n=3
Figure 10.5: Encoder for the repetition code (3, 1).

k=2

—> Uy | ¥

X3 | X2 | X |—>=

n=3
Figure 10.6: Encoder for the parity-check code (3, 2).

Example 10.2 Parity-check code (3, 2)
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This is a code in which the third digit is a parity check on the first two digits. The code

word is defined by the relations

Iy =Uy, Tp=Uup, I3= U T U

(10.2)

Notice that the encoder is systematic,

3 are used in the code.

Data words

Code words

0
1

000
111

; uences of length
and that only two of the cight seq &

The systematic encoder is shown in Fig. 10.6. It is defined by the correspondence

Data words | Code words
00 000
01 011
10 101
11 110

Notice that only four of the eight sequences of length 3 are used in the code.
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k=4
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¥
MEARAR IR I
n=T

Example 103 Hamming code (7, 4) ‘
The Hamming code (7, 4) is defined by the relations

I
Is
Iy

Iy

= 1y,

Figure 10.7: Encoder for the Hamming code (7, 4).

i= l-2|3|‘1

= w4+ uz U3 (10:3)
= g4 g + Uy
- ul+u1+ﬂ'-1-

The comresponding systematic encoder is shown in Fig. 10.7. It is defined by the corre-

spondence

Data words | Code words
0000 0000 000
0001 0001 011
0010 0010 110
0011 0011 101
0100 o100 111
0101 0101 100
0110 0110001
o111 0111 010
1000 1000 101
1001 1001 110
1010 1010011
1011 1011 000
1100 1100 010
1101 1101 001
1110 1110 100
i | ounan |
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Notice that only 16 of the 128 sequences of length 7 are used in the code. o

These examples show that all the information required to specify the encoder
operation is contained in relations of the type of (10.1), (10.2), and (10.3). With
reference to Figs. 10.5, 10.6 and 10.7, these relations specify the connections
between the input register cells and the adders. If the encoder is systematic, only
the (n — k) paritycheck equations of the redundant digits must be assigned.

The information that specifies the encoding rule, and thus the structure of
the encoder itself, can be concisely represented by the generaror matrix G of the
code. It is a k x n matrix whose (1, 7) entry is 1 if the i-th cell of the input register
is connected to the j-th adder, and 0 otherwise. Using the row-vector notation
for the data word u and the code word x, the encoding rule is described by the
equation

x =uG (10.4)

It is easily seen thai obtaining a code word x through (10.4) is equivalent to

summing the rows of the matrix G corresponding to the ones contained in the
information sequence u.

Example 10.4 For the (7, 4) Hamming code of Example 10.3, the generator matrix G

can be found by inspection of the encoder of Fig. 10.7 as follows:
L000:101
G = 0100 1 11 (10.5)
0010:110
0001 :011

If we want the code word corresponding to the data word u = [1100], we must add the
first two rows of G, obtaining

1000101 +
0100111 =
1100010

and the result agrees with the code table given in Example 10.3, a

For systematic encoders, the first k columns of G form a k x k identity
matrix, so that G assumes the form

G=[L:P] (10.6)
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where I is the k x k identity matrix and P isa k x (n— k) matrix containing
the information regarding the parity checks. The knowledge of P completely
defines the encoding rule for a systematic encoder.

The following impartant properties of parity check codes can be proved.

Property 1 The block code consists of all possible sums of the rows of the gen-
erator matrix.

Property 2 The sum of two code words is still 2 code word.
Property 3 The n-tuple of all zeros is always a code word.

Because of these properties, parity-check codes are also called linear codes. Lin-
ear block codes can be interpreted as being 2 subspace of the vector Space con-
taining all 2" binary n-tuples. From this algebraic viewpoint, the rows of the
generator matrix G are a basis of the subspace and consist of k linearly inde-
pendent code words. In fact, all their 2* linear combinations generate the entire
subspace, that is, the code. Note that any k linearly independent code words of
an (n, k) linear code can be used to form a generator matrix for the code. For
these reasons, it is straightforward to conclude that any generator matrix of an
(n, k) block code can be reduced, by means of row operations and column per-
mutations, to the systematic form (10.6), which is also called reduced-echelon
form. However, while row operations do not alter the code, column permuta-
tions may lead to a different st of code words, i, 102 code that differs from
the original one in the arrangement of its binary symbols. Two codes whose
generator matrices can be obtained from each other by row operations and col-
umn permutations have the same word error probability, and, because of that,
are said to be eguivalent. Note, however, that their bir error probabilities (it will
be defined later in the chapter, together with the word error probability) may
be different, because equivalent codes can admit different encoders, and hence
different mappings between data words and code words.

Thus, every (n, k) block code is equivalent to a sy stematic (n, k) block code
(see Problem 10.5). Therefore, if the word error probability is the parameter of
interest, we can consider only systematic codes without loss of generality.

An important parameter of 2 code word is its Hamming weight, that is, the
number of ones that it contains. The set of all distinct weights in a code, together
with the number of code words of that weight, is the weight distribution of the
code. Owing to the previous definition, equivalent codes have the same weight
distributions.  Given two code words x; and x;, it is useful to define a quantity
to measure their difference. This quantity is the Hamming distance dij between
the two code words, defined as the number of positions in which the two code
words differ. Cleatly, di satisfies the condition 0 = diy <N The smallest

10.2.  Block codes
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xzo:i:: H,::-:lming distances between distinct code words (f # j) is called
uim distance din ©f the code. The following property allows an
computation of dmy for linear codes. -

Property 4 The minimum distan i oc
ceof alinear b i ini ;
of it5. Do0E I lock code is the minimum weight

In fact, the distance between two bi i
, nary sequences is equal to the weight of thei
modulo-2 sum, and the sum of two code words is still a code word (;’lrgnpe?-ty[g?r

Example 10.5 Consider agai i
again the {7, 4) Hamming code of Ex
code table, we obtain the following weight distribution of Example 103. From the

Weight | Number of
code words

WS
e B B

Using Property 4, we get dmin = 3.

10.2.1. Error-detecting and error-correcting capabilities of a block code

:;s:ﬂmﬂ: :t;it uhze demodulator makes hard decisions so that the discrete channel
channel encoder and decoder can be modeled as a binary symmetric

:ﬂmSG% Ea-;_h uans_m_ittv.-.dlcodc word x is received at the decoder input as
& sequenc i :it:;:;nan dag:ts (Fig. 10.1). The encoder is systematic. Therefore
y are the received information digits, whil ining
{n — k) digits are the received pari igi D e 3 cam contae
_ parity-check digits. The sequence y can contai
independent random errors caused by the channel noise. Let us d:ﬁ bi lfl
vector e called an error vector: e 4Ty

e=[e,..., e (10.7)

Each component ¢, is 1 if the chan
o nel has changed the 1- ;
otherwise, it is 0. The received vector is then ged the &-th transmitied At

y=xXx+e {m_g]

where x is the transmitted code word. T
; : he decoder recomputes the (n — k
parity-checks using the first k received bits, and compares them with the[?ﬂ — kg
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i ived sequence is a code word.
ived ty-checks. If they match, the receiv _ :
mmlmis?n mycrrm is detected. Therefore, at least for error dcl‘.e:tl::;! “:gd:f
coding rule is very simple: an error patterm is detected whenm'crs Jcast one o
the (n — k) controls on parity checks faiJs.].gtm&:ﬁneawcml contains
i hackswfumcdmdwmuivedwmﬂy.[m (n — k) binary digi
Hﬂmpm:tr;l parity checks that are satisfied, and ones for those _um are not. Thc
m:luuis called the syndrome of the received veclor y. F.n_calhn!g the c!:ﬁm:zhon
(10.6) zf the generator matrix G of a systematic code, it 1s easily verified that
the syndrome can be obtained from the equation

where the prime means transpose, and where we have introduced the pariry-
check matrix H, defined as
HEP L. (10.10)
It is an (n — k) x n matrix, whose rows represent the pari[y-chf:: symbols
computed by the decoder. A direct calculation using (10.6) shows tha
GH =0 (10.11}

where 0 is a k x (n — k) matrix all of whose elements are zero.

amming code of Example 10.3. The three

Example 10.6 Consider again the (7, 4} H ce y can be wril-

parity-check symbols computed by the decoder on the received sequen
ten by inspection of (10.3) as follows:

51 = (h+w+m tus

A2
53 = (mmtuatyatus (10.12)
83 = {'y1+m+yl}+“
The parity check matrix is therefore
11 10:100
{10.13}

H=|g 111:010
1101:001

. o 10
It can be verified that (10.13) is also obtained from {10.5} using the definition (10 I):L
The property (10.11) can also be verified.

From the definition of the syndrun‘ulz associated with a received sequence Y,
the following two properties can be verified:
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Property 5§ The syndrome associated with a sequence y is a zero vector if and
only if y is a code word.

Property 6 The decoder can detect all channel errors represented by vectors e
that are not code words.

Since the channel can introduce 2" different error vectors, only 2* of them are
not detected by the decoder, that is, those corresponding to the set of code words.
Finally, since no code word exists with a weight less than d,.,;, (except, of course,
the all-zero code word), the following theorem can be proved.

Theorem 10,1

A linear block code (n, k) with minimum distance diin can detect all error vec-
tors of weight not greater than (d,;,, — 1). 7

Until now, we have only explored the error-detection capabilities of a hard-
decision decoder. The problem of error correction is more complicated, since
the syndrome does not contain sufficient information to locate the errors. Using
(10.8), the expression (10.9) for the syndrome can be rewritten as

s =yH = (x +e)H' (10.14)

where x is a code word. Since xH' = 0 (Property 5), there are 2* different
sequences y that generate the same syndrome. They are obtained by summing
to a given error vector e the 2* code words, Therefore, given a transmitted code
word x, there are 2* error vectors that give the same syndrome. Which one
actually occurred is an uncertainty that cannot be removed by using only the
syndrome,

A suitable decoding algorithm must be elaboraied. Assume that maximum
likelihood (ML) hard decisions are taken by the decoder. This means that it
achieves minimum word error probability on the received code words when they
are equally likely. If p is the transition probability of the equivalent BSC implied
by hard decisions, we have

Ply | %) =p%(1 = p)" % (10.15)

where n is the block length and d; is the Hamming distance between the received
sequence y and the transmitted code word x;. Assuming, without loss of gener-
ality, p < 1/2, the probability P(y | x;} is a monotonic decreasing function of
d;. Therefore, ML decoding is accomplished with minimum Hamming-distance
decisions. The “best” decoding algorithm decides for the code word x; which is
closest to y. Recalling the discussion regarding (10.14), we can conclude that
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i i rds.
Figure 10.8: Qualitative representation of the decision regions assigned 1o code wo

the minimum-distance decoding algorithm assumes that the em;;:;:u;ue -g:'[h::
actually occurred is the minimum-weight ermor vector !:::»e E;g e e
vectors yielding the syndrome associated u[llh the recei su-gls :.m{iamding
considering this decoding rule in detail using l.hemlmmu.}m o e
algorithm, let us relate the emror-correcting capabilities of 3

code parameter dmis.

Theorem 10.2

A linear block code (n, k), with minimum distance dmi=, Can m t:jﬂl[g
vectors containing no more than t = L(dmin = l}_fi] erTors, = lo] (0
“floor” of a) denotes the largest integer contained in a. The code is the
error-correcting code, and is often denoted as an (n, k, t) code. ¥

Proof of Theorem 10.2

The decoding algorithm is implemented by assilgning to each :;c:hd; :Zr:l:;:;c:o
sion region containing the subset of all the mogweﬂ “';."”“‘;; e o veo.
it than to any other (minimum distance deceding, see Fig. vul -
tor with no more than [(dems — 1)/2] emrors produces a recei sequence

inside the correct decision region.

The results of Theorems 10.1 and 10.2 are summarized in Table 10.1.

i 2. a design goal for a block code
Based on previous Theorems 10.1 and 102, a : for
(n,k) is to uszl:s redundancy to achieve the largest possible n-umrnur: disra;::d
d,,:;.. So far, no general solution to this mu-blg:: t]: hmu':nl;ed]nm:di“ sm,ﬁ;p;jl
lowcrbmndawdm,muwd,mofﬂmw: descni

10.2. Block codes %

Wﬂﬂﬂmuhmul?
mqﬂ'\mhwmt—-g
'huuhil-'ir—‘p—-gg

Table 10.1: Error correction and error detection capabilities of linear block codes as a
Junction of deyig.

10.2.2. Decoding table and standard array of a linear block code

Using the minimum-distance hard decoding algorithm just described, the de-
coding operation can be performed by looking for the code word nearest to the
received sequence. This approach requires the storage of the 2* code words and
repeated comparisons with the received sequence. The total storage requirement
is on the order of n x 2" bits. Hence, the approach becomes rapidly impractical
even for moderately-sized codes. Also, the comparison process is unacceptably
long when n and k are large.

A more efficient approach is to evaluate the syndrome associated with the
received sequence ¥ by assuming that the error vector e that actually occurred
is the minimum-weight vector in the set of the 2* vectors that generate the same
syndrome. With this approach, we can build a decoding table by associating
with each syndrome the error vector of minimum weight that generated it. The
positions of the ones in the error vector indicate the digits that must be corrected
in the received sequence y. This approach is better clarified by the following
example.

Example 10.7 The (7, 4) Hamming code has minimum distance 3. Thus, it is expected
to correct all single errors. There are, of course, 128 possible received words and only §
different syndromes. All these sequences are included in Table 10.2. They are grouped
in rows containing all sequences that share the same syndrome. The syndrome is shown
as the first entry in each row, The first column of the table contains all error vectors
of minimum weight. It can be verified by inspection that each error vector containing
only one error has a different syndrome, and hence it can be comrected. Therefore, the
decoding table for this code is the following:
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Esror paticras

1010
won
1000

———— -
—— - —

—_— e -

- -

000101 O
000100
000111
00L10
000001

1
1010101
1100101

_—====

L
55 8§s238s82=

e

Table 10.2: Standard array of the (7, 4) Hamming code.

ey 1

S S S —
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Syndrome | Error vector Digit in error
000 0000000 None
001 0000001 7
010 0000010 6
011 0001000 4
100 0000100 5
101 1000000 1
110 0010000 3
111 0100000 2

Obviously, the syndrome 000 corresponds to the set of the 16 code words. The
syndrome 111 locates an error in the second position of the received sequence, and so
on. Table 10.2 can also be interpreted as follows. Assume that the sequence 1101010
is received. The corresponding syndrome is 011. Therefore, an error in position 4 is

assumed and corrected. The code word obtained, which is 1100010, appears at the top
of the column containing the received sequence. (=]

A table such as Table 10.2, containing all the 2" n-tuples (the possible re-
ceived words) of length n organized in that order, is called the standard array
of the code. It has 2* columns and 2"~* rows. The rows are called cosets. The
first word in each row is nominated a coset leader. The top word in a column is
a code word, and each coset leader is the minimum-weight word that generates
the syndrome common to all words of that coset.

The decoding table is built by simply associating with each syndrome the
corresponding coset leader of the standard array. The coset leaders are there-
fore the correctable error vectors; if the error vector is not a coset leader, then
an incorrect decoding will be performed. To minimize the average word error
probability, the coset leaders must be the error vectors that are the most likely to
occur. For a BSC, the coset leaders are the minimum-weight words associated
with a given syndrome. Therefore, the decoding algorithm works as follows:

1. Compute the syndrome for the received sequence.
2. Find the correctable error vector (coset leader) in the decoding table.

3. Ge(meesliumzdcodcwordbyaddingthccouectableenorvcaorlom
received word.

The decoding table requires the storage of 27—+ syndromes of length (n — k)
and of 2"~* error pattems of length n: a total of 2% x (2n — k) bits. For high
rate codes (k = n), the storage requirement is close to n x 2"~k considerably
less as compared to the n x 2* bits required by an exhaustive search. In spite of
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(n, k)

(3,1)

(7, 4)
(15, 11)
(31, 26)
(63, 57)
(127, 120) |

Table 10.3: Parameters of the first Hamming codes.

- OB W N

i i and
this interesting result, the decoding table, 0o, becomes u:npracm:al v'r:::t :e s
k are large numbers. In that case a more elaborate alge_braxc structure Faie
signed to the code in order to employ decoding strategies based on compul

algorithms, rather than on look-up tables.

102.3. Hamming codes
Equation (10.14) can be rewritten in the form

s = eH' (10.16)
Therefore, the syndrome of a given sequence is the sum of t(l:u: coluxz; ;fi:-:
corresponding to the position of the ones‘in the error vector.tcdonseq mo,re g
column of H is zero, an error in that posiuoq cannot be detected. Furdmeiﬁom c‘m.m
two columns of H are equal, 8 single error in one 9f those two po;n s
be corrected since the two syndromes are not distinct. We c;an ::“ g
block code can correct all single errors if and only if the colum

trix H are nonzero and distinct. ‘
cmll;a‘:l:li:g codes are characterized by a matnx l;l{‘whose columns -F’:r all the
i igi ro sequence. For every
ible sequences of (n — k) binary digits except the z&

fO:‘zes,:..., there is a (2 = 1,2 ; 1- l)' Ha.nlmln:::I:ode These codes
= 3 and are thus capable 0 correcting errors.
'Ilia:id&'h- 1 —1)/(2" = 1) increases with {and approaches l:;rl — 0o, The

parameters of the first six Hamming codes are listed in Table 10.3.

Example 10.8 The parity-check matrix of the Hamming code (15,11) is the following:

R R
00000001 11
oooxxnnoooon:xx 1017

H’0110011001100(\):
1010101010101

10.2. Block codes =

Notice that H is not written in the systematic form of (10.10), its columns being in lex-
icographical order. It can be reduced to systematic form by a simple rearrangement of
columns. The interesting property of (10.17) is that the 4-tuple in each column, as a
binary number, identifies the column position. Therefore, an error vector with a single
error will generate a syndrome that gives, in binary form, the position of the error in the
received sequence. This information can be used for correction. o

Hamming codes have an interesting property that can be verified by inspec-
tion of the standard array (see Table 10.2 for the (7, 4) code). All possible re-
ceived sequences have Hamming distance 1 from one of the code words. Codes
of this type are called perfect codes. Another property of the Hamming codes
is that they are one of the few classes of codes for which the complete weight
distribution is known. The weight distribution of a code can be represented in a
compact form as a polynomial, called the weight enumerating function (WEF)
of the code. It is a polynomial in the indeterminate D

A(D) = Y 4,D* (10.18)
d=0

where A, is the number (multiplicity) of code words in the code with weight
(or, equivalently, Hamming distance from the all-zero code word) d. For the
Hamming codes, the WEF can be shown to be

A(D) = n;“[(l +D)*+n(1+ D)*V2(1 _ D)2 (10.19)

The result of Example 10.5 can be checked against (10.19).

Each Hamming code can be converted to a new code by adding one parity
digit that checks all previous n digits of the code word. This results in a class
of (2,2' = 1 — ) block codes called extended Hamming codes. Their parity-
check matrix H,. is obtained by adding a new row to the Hamming parity-check
matrix H as follows:

How = H (10.20)
)
|11 ... 1 ¥

The last row represents the overall parity-check digit. Since, with an overall
parity-check, the weight of every code word must be even, the extended Ham-
ming codes have dmis = 4. Their particular structure makes it possible to detect
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all double errors while simultaneously correcting all single errors (:s in t:)csuo::;
inal Hamming codes). In fact, the syndromes for double errors .ormal S
distinct from that of the syndromes for single errors. The decoding algoni
works as follows:

igi i umber of errors must be
1. If the last digit of the syndrome is l.u?cntheu :
odd. Using the minimum-distance algorithm, correction can be performed
as for the Hamming codes.

igi i is not all-zero, then
2. If the last digit of the syndrome is 0, but the syndrome i
no correction is possible since at least two errors must have occurred. A
double error is therefore detected.

i i ition of an overall parity check can
This rty of extending a code by the addition ol . C
be ‘lp:'?hstoymy linear block code other than the Hgmmnng codes. In pa:txcgl::;
any linear (n, k) block code with an odd minimum d:w can be conv&:tcd ini
an extended (n + 1, k) block code with a minimum distance increased by one.

10.2.4. Dual codes

The generator matrix G and the parity-check matrix H of a linear (n, k) block
code are related by (10.11). This relation can be rewritten as

HG =0 (10.21)

Thus, the two matrices can be interchanged and the H matrix can be the gene:
ator matrix of a new (n,n — k) block code. Codcs: that are so related are :'mht
to be dual codes. There is a very interesting n'.lauoyshxp betwccn the weigl
distributions of two dual codes. Let A(LD) be the weight cmfmcraung‘ functt‘fotn
of the (n, k) block code and Ayuu(D) the weight enumerating t'uncuo|n t:d ll; s
(n,n — k) dual code, Then, the two weight enumerating functions are rela Yy
the identity (MacWilliams and Sloane, 1977)
1-D

Aguat(D) = 2*(1 + D)"A (H—D) (10.22)

This relationship is very useful in determining the weight structure of hligh-m::
block codes through an exhaustive computer search performed on their low-ral
dual codes.

10.2.5. Maximal-length codes

The duals of the Hamming codes are called maximal-length codes. Thletefore:
for every | = 2,3,4,... there is a (2' = 1,0) maximal-length code. Its 5:2
erator matrix is the parity-check matrix of the corresponding Hamming code.
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The weight distribution of these codes can be easily determined by introducing
(10.19) into (10.22). The weight enumerator A(D) for the maximal-length codes
is thus found to be

A(D) =1+ (2 - 1)D*" (10.23)
Hence, all nonzero code words have identical weight 2“1, Also, this is the min-

imum distance of the code. These codes are also called equidistant or simplex

codes. Additional insight into the properties of these codes will be obtained later
in connection with the description of cyclic codes.

10.2.6. Reed-Muller codes

The Reed-Muller codes are a class of linear block codes covering a wide range of
rates and minimum distances, They present very interesting properties, among
them, the fact that they can be soft-decoded by using a simple trellis (see Fomey,
1988b). )

Forany m andr < m, there is a Reed-Muller code with parameters given by

n=2% k=3 (1), dpe=2mr (10.24)
i=0

The generator matrix G of the rth-order Reed-Muller code is defined by as-
signing a set of vectors as follows. Let Vo be a vector whose 2™ elements are
all ones, and let vy, vy, ... » Vm be the rows of a matrix with all possible m-
tuples as columns. The rows of the rth-order generator matrix are the vectors
V0, V1, .., Vi and all the products of Viy+ o+, Vi WO at a time, three at a time,
up to r at a time. Here the product vector viv; has components given by the
products of the corresponding components of v; and v;.

Example 10.9 In this example, we show how to generate the Reed-Muller codes with
m = 3. There are two codes. They have the following parameters:

rin k dypl
1/8 4 4
2/8 7 2

The vectors used for building the gencrator matrices are given in Table 10.4. The first-
order code (r = 1) is generated by using the vectors vg, vy, v2, vy as rows of the gener-
ator matrix. The second-order code (r = 2) is generated by augmenting this matrix with
the additional three rows of Table 10.4. (n}

The first-order Reed-Muller codes are closely related to the maximal-length
codes. If a maximal-length code is extended by adding an overall parity check,
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e R R U W U
vwioooo1111
1|,.,|:|n111:nllll
vs 01010101
v [0 00000 L1
vlvsﬂﬂﬂﬂﬂlul
\..2“000100'0_1_

Table 10.4: mﬂﬁrmgmwmqmwmm
m=3

we obtain an orthogonal code. This code has 2™ code words. Eachhaswu:]gi_n
gm~1_except for the all-zero code word. Theret‘utc every code word ;g::ds 1:;
gm-1 positions and disagrees in 2™—1 positions m_th every dheroot;; -
this code is transmitted using an antipodal sig;_mhngschqm, each o

is represented by one out of 2™ orthogonal signals. 'Ihsax_plmm _mﬁ
“orthogonal” code. For the case m = 3, the code gmmwrmmxmn:amum
three rows v, vz, and v of Table 10.4. In fact, the first column repi o
overall parity-check digit, whereas the other columns are n.'l.'l the T:lfﬁm
triples of binary digits. The first-order Reed-Muller code is obtai m this
code (the orthogonal code) by adding to the ggmnlw matrix lhlc .aum .
vq. In terms of transmitted signals, this operation adds to the onigin: mug:l:d
signal set the opposite of each signal. For this rmun,ﬂmcodelz udtc e
a biorthogonal code. Finally, notice that the rth-order Reed-Muller ¢ is

dual of the Reed-Muller code of order (m — 1 — 1).

10.2.7. Cyclic codes

i t of math-
The eyclic codes are parity-check codes that present a large amount of |
emug:l structure. These codes share, of course, all the properties pm'la"luusly
described for parity-check codes, but, in addition, have pequlm.r properties that
allow easy encoding operations and simple decoding algorithms. Cyclic codes
are, for this reason, of great practical interest.

Definition 10.1

An (n, k) linear block code is a cyclic code if and only if any eyclic shift of a
éode word produces another code word.
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Example 10.10 It can be verified that the (7, 4) Hamming code of Example 10.3 is a
eyelic code. Take, for instance, the code word 0111010. There are six different cyclic
shifts of this code word.

1110100 1101001 1010011 0100111 1001110 0011101

Theynﬂhelmgmﬂ:udmd:wmm:amilmmrﬂlmecodawrh. u]

In dealing with cyclic codes, it is useful to represent a binary sequence of n
bits as a polynomial in the indeterminate Z of degree not greater than (n — 1)
with binary (0 and 1) coefficients. The binary digits of a code word will be
numbered in decreasing order from (n — 1) to 0, so that each index matches the

of Z. A code word X = [Tn_1, Tn—2, ..., Zo| is then represented by the
code polynomial z(Z) as follows:

:(Z] =I,,_1,Z‘-I'+I,._gz‘_i+ .. .+I|z+to (1025]

The binary coefficients of this polynomial will be manipulated with the rules of
modulo-2 arithmetic. In this new notation, the code words of an (n, k) linear
block code are in a one-to-one correspondence with code polynomials of degree
not greater than (n — 1).

By definition of cyclic code, if (Z) is the code polynomial of a cyclic code,
then a cyclic shift of the code word (say to the left) of i positions generates
another code polynomial that we denote by z(*(Z). Theorem 10.3 relates the
polynomial representation of a cyclically shifted n-tuple to the binomial Zrm+1,
which will be shown to play a crucial role for cyclic codes.

Theorem 10.3

The code polynomial (¥ (Z) is the remainder resulting from dividing Z'z(Z)
by (Z™ + 1); that is,

2'z(Z) = ¢(Z) 2" +1) + £9(2Z) (10.26)
where g( Z) is the quotient polynomial of degree not greater than (i — 1). 7
Proof of Theorem 10.3
Let us write explicitly Z%z(Z)

Z‘z[Z} = I..-]Z"_Hi + In_:zn_zﬁ e F Tpi B+ zOZ"



