Corso di Information Theory and Coding

Prof. Francesco A. N. Palmieri

Dipartimento di Ingegneria, Universita della Campania Luigi Vanvitelli
Corso di Laurea Magistrale in Ingegneria Informatica

AA 2020-21

CODICI CONVOLUZIONALI

Estratto dal libro:

S. Benedetto, E Biglieri, Priciples of Digital Transmission with Wireless
Applications, Kluwer Academic Press, 1999

11

Convolutional and concatenated
codes

With block codes, the information sequence is segmented into blocks that are en-
coded independently to form the coded sequence as a succession of ﬁ:u:d-l:ng'm
independent code words. Comvelutional codes behave differently. T‘h: ng bits
that the convolutional encoder generates in correspondence of the k; informa-
tion bits depend on the ky data bits and also on some previous data frames (see
Section 10.1); the encoder has memory. .

Convolutional codes differ deeply from block codes, in terms pl‘ their struc-
ture, analysis and design tools. Algebraic properties are of greal importance in
constructing good block codes and in developing efficient decoding algorithms.
Good convolutional codes, instead, have been almost invariably found by ex-
haustive computer search, and the most efficient decoding algor'!mms (like mc
Viterbi maximum-likelihood algonthm and the sequcntinll algorithm) stem di-
rectly from the sequential-state machine nature of convolutional encoders, rather
than from the algebraic properties of the code.

In this chapter, we will start by establishing the cmmuction_ of binary convo-
lutional codes with linear block codes, and then widen the horizon by assuming
a completely different point of view that looks at a cmvoluﬁqml encoder as a
finite-state machine and introduces the code trellis as the graphic tool describing
all possible code sequences.

We will show how to evaluate the distance properties of the code and the er-
ror probability performance, and describe in details the application of the Viterbi
algorithm to its decoding. A brief introduction to sequential and threshold de-
coding will also be given.

The second part of the chapter is devoted to concatenated codes, a concept

332

11.1. Convolutional codes 533

Figure 11.1: General block diagram of a comvolutional encoder in serial form for a
(ng, kn) code with constrains length N.

first introduced by Forney {1966) that has since then found a wide range of appli-
cations. Afier describing the classical concatenation schemes, we will also de-
vote some space to the recently introduced “turbo™ codes, a very promising new
class of concatenated codes that approach the capacity coding gains at medium-
to-low bit error probabilities.

11.1. Convolutional codes

A binary convolutional encoder is a finite-memory system that outputs n, binary
digits for every k; information digits presented at its input. Again, the code rate
is defined as R, = ky/ng. In contrast with block codes, k; and ny are usually
small numbers. A scheme that serially implements a linear, feedforward binary
convolutional encoder is shown in Fig. 11.1. The message digits are introduced
kq at a time into the input shift register, which has Nk, positions. As a block
of kq digits enters the register, the ny modulo-2 adders feed the output register
with the ny digits and these are shifted out. Then the input register is fed with
a new block of kg digits, and the old blocks are shifted to the right, the oldest
one being lost. And so on. We can conclude that in a convolutional code the ny
digits generated by the encoder depend not only on the corresponding k, message
digits, but also on the previous (N — 1)ky ones, whose number constitutes the
memory v 2 (N = 1)kqg of the encoder. Such a code is called an (g, kg, V)
convolutional code. The parameter IV, the number of data frames contained in

534 11. Convolutional and concatenated codes

the input register, is called the constraint length of the code." With reference to
the encoder of Fig. 11.1, a block code can be considered to be the limiting case
of a convolutional code, with constraint length NV = 1.

If we define u to be the semi-infinite message vector and x the comrespond-
ing encoded vector, we want now to describe how to get x from u. As for block
codes, to describe the encoder we only need to know the connections between
the input and output registers of Fig. 11.1. This approach enables us to show both
the analogies and the differences with respect to block codes. But, if pursued fur-
ther, it would lead to complicated notations and tend to emphasize the algebraic
structure of convolutional codes. This is less interesting for decoding purposes.
Therefore, we shall only sketch this approach briefly. Later, the description of
the code will be restated from a different viewpoint.

To describe the encoder of Fig. 11.1, we can use N submatrices Gy, Gy,
G, ..., Gy containing kg rows and ng columns. The submatrix G; describes
the connections of the i-th segment of ko cells of the input register with the ng
cells of the output register. The ng entries of the first row of G; describe the
connections of the first cell of the i-th input register segment with the ng cells
of the output register. A “1” in G; means a connection, while a "0" means no
connection. We can now define the generator matrix of the convolutional code
as

Gy Gy ... Gn
G, Gy ... Gy
G Gy ... Gu (1L.1)
G, Gz ... Gy

=]

All other entries in G o, are zero. This matrix has the same properties as for block
codes, except that it is semi-infinite (it extends indefinitely downward and to the
right). Therefore, given a semi-infinite message vector u, the corresponding
coded vector is

x =uGy (11.2)
This equation is formally identical to (10.4). A convolutional encoder is said to

be systematic if, in each segment of nq digits that it generates, the first ko are a
replica of the corresponding message digits. It can be verified that this condition

IThe reader should be warned that there is no unigue definition of constraint length in the
convolutional code literature.

11.I. Convolutional codes 535
bl uy Mg "
DIOIC
x
(a) (b)

Figure 11.2: Two equivalent schemes for the convolui
el
of Example 1.1, encoder of the (3,1,3) code

is equivalent to have the following ky x ng submatrices:

10 0 ...0
0 1 0 .0
Gi=| 0 0 1 ... 0|P (113)
L0 0 0 .
and
[0 0 0 ... 0
00 0 0
Gi=(0 0 0 0P (11.4)
[0 0 0 ... 0

fori =2,3,..., N. All these concepts are better clarified with two examples.

Example 11.1 Consider a (3,1,3) convolutional code. Two equivalent schemes for the
encoder are shown in Fig. 11.2. The first uses a register with three cells, whereas the
second uses two cells, each introducing a unitary delay. The output register is replaced
by a commutator that reads sequentially the outputs of the three adders. The encoder is
specified by the following three submatrices (actually, three row vectors, since ky = 1):

G = (111
Gy = [011]
Gy = 001

536 11. Convolutional and concatenated codes

v :
| g} w2, |1 B2,

BIOIC

X
Figure 11.3: Convolutional encoder for the (3,2,2) code of Example 11.1.

The generator matrix, from (11.1), becomes

11 011 001 000 ...
000 111 011 001 000
Goo=| goo 000 111 011 001 000 ...

It can be verified, from (11.2), that the information sequence u = (11011....)isw
into the sequence x = (111100010110100...). The encoder is systematic. Notice that
mecodesequeooecmbeobuinedbywmmingnwdub-zmemsofcuconupood—
inztou\e“l“inlhehfmionmnforuockooda. o

Example 11.2 Consider a (3,2.2) code. The encoder is shown in Fig. 11.3. The code
is now defined by the two submatrices

101 001
G"[o 1 o] G"[o 0 1]
menooderiuysmtic.since(llj)md(ll.l)muﬁsﬁed-mgenemormixis
now given by -
101 001 000 ... -.- |
010 001 000 ...
000 101 001 000 ...
Goo = | 000 010 001 000 ..

000 000 101 001 000
{ooooooolooolooo

The information sequence u = (11011011. ..) is encoded inw!becodesequencex;
(111010100110...).

11.1. Convolutional codes 537

My
"'l s
My
u
x
h uul

Figure 11.4: Parallel implemeniation of the same convolutional encoder of Fig. 11.3.

T T S ™

Figure 11.5: General block diagram of a convolutional encoder in parallel form for an
(na, ko, N) code.

The encoder of Fig. 11.3 requires a serial input. The ko = 2 input digits can also
be presented in parallel, and the corresponding encoder is given in Fig. 11.4.

The parallel representation of the encoder, shown for a general (ng, ko) en-
coder in Fig. 11.5. is more flexible than the serial one of Fig. 11.1, as it allows
allocation of a different number of register cells in each parallel section. When
N, = N, Vi, we can define the constraint length)V as in the case of the serial
representation. When the N;’s are different, we define the constraint length N
as the largest among the NV;’s, i.e., N 2 max; N;, @ = 1,..., ko. The encoder
memory is in this case v = - T2 (N; — 1).

If we look for a physical meaning of the constraint length, N — 1 represents
the maximum number of trellis steps (see Section 11.1.1) that are required to
return from any state of the encoder to the zero state. This “remerge” operation,
called rrellis termination, is required to transform K sections of the trellis of a
convolutional code into a block code with parameters k = ky- K, n = ng- (K +
N = 1). Sometimes, system constraints impose a frame (or “burst”) structure
on the information stream. For short bursts, terminated convolutional codes are
used, and each burst is decoded using the Viterbi algorithm without truncation

538 11. Convolutional and concatenated codes

11.1.3). . .
{mNoﬁcc 1hat, in the more general case of different N;'s, the structure of the

encoder is not identified by the three parameters (ng, ko, IV); instead, beyond ko
AL ded.
, the whole set {N;}2, is nee _
Elm:lft'lr‘;am ;x:mple 11.1, it éan be verified that the operation of th.e F.nnnd:r fu;i ;::1
(ng, 1) code is to generate ng digits of the sequence x for each digit u; according
to the following expression:

(Zi1, Tigy Tidy - - -1 Ting) = wiG1+win1Ga+ .. A ien1 G
N
= z: u."_k+1Gk {11.5)

k=1

This is the discrete convolution of the vectors Gy, G, .. X Gy and the J':-?r:f;:
input SEqUence (ui, tiet, - - ., Yi-N+1)- 1he [erm convolugional code stem
i rvation. . .

IhISQGE:; often, the number of modulo-2 adders in the encoder is srpdailler t:;gl

the constraint length of the code. In fact, code rates of 1/2 or 1/3 are w'L < f._-:s on.

and in these cases we have only two or three adders, respccuvel_y. F-l:,r . nmdumd,

instead of describing the code with the V' submatrices :Gi previously [Ihe ng;

it is more convenient to describe the encoder connections by using the fran

funcrion matrix G

i1 " Blme (116

G= : :
Bkgl " Brgmo

where g; ; is a binary row vector with V entries ::!escﬁbing the ccrvnncctinns- fr:rr:
the ith input, 1 = 1,..., kg, to the jth output, 7 = 1,...,mn. Vectors g ;
often called generators of the encoder.

Example 11.3 Let us reconsider the code ufE.xa.mpI_e 11.1. This code hilts kg =1land
ng = 3. Therefore, it can be described with the following three generators:

Bl = [Lﬂm
Bz = Um]
g3 = (111)

In the literature, the binary vectors g, ; are also represented as.oc:al numhﬁ:s;;lii}a; tlii
or polynomials in the indeterminate Z, as was done for cyclic m;.:s.r oy ghﬂ
the previous vector g, 3 = (110} would be represented as gL.alZ) _ha|1 Ch.amc.teﬁm
tables describing the “best” convolutional codes (_s:r. Section 11.1.2) s'|1 po———
the codes using the transfer function matrix, in which each generator wi

as an octal number.

IL1. Convolutional codes 539

The advantage of this representation is not immediately apparent. As in Exam-
ple 11.1, we have three vectors. Bue, for example, in the case of a (3,1,10) code, this
second representation always requires three generators of length 10, whereas in the other
representation we would need 10 vectors (the submatrices G of len gth 3. No doubt the
first description is more practical.]

11.1.1. State diagram representation of convolutional codes

As already noted, there is a powerful and practical alterative to the algebraic
description of convolutional codes. This alternative 18 based on the observation
that the convolutional encoder is a finite-memory system, and hence its output
sequence depends on the input sequence and on the state of the device. The
description we are looking for is called the state diagram of the convolutional
encoder.

We shall illustrate the concepts involved in this description by taking as an
example the encoder of Fig. 11.2. This encoder refers to the (3,1,3) code de-
scribed in Example 11.1. Notice that each output triplet of digits depends on the
input digit and on the content of the shift register that stores the oldest two input
digits. The encoder has memory v = N — 1 = 2. Let us define the state oy of the
encoder at discrete time £ as the content of its memory at the same time. That is,

e = (g1, up_g) (11.7)

There are N, = 2* = 4 possible states. That is, 00, 01, 10, and 11. Looking at
Fig. 11.2, assume, for example, that the encoder is in state 10. When the input
digitis 1, the encoder produces the output digits 100 and moves to the state 11.

This type of behavior is completely described by the state diagram of Fig, 11.6.
Each of the four states is represented in a circle. A solid edge represents a tran-
sition between two states forced by the input digit “0,” whereas a dashed edge
fepresents a transition forced by the input digit “1.” The label on each edge rep-
resents the output digits corresponding to that transition, Using the state diagram
of Fig. 11.6, the computation of the encoded sequence is quite straightforward.
Starting from the initial state 00, we jump from one state to the next following a
solid edge when the input is 0 or a dashed edge when the input is 1.

If we define the states to be §) = (00), 57 = (01),8; = (10), 8¢ = (11),
we can easily check that the input sequence u = (11011...), already con-
sidered in Example 11.1, assuming 5 as the initial state, corresponds to the
path 5,535,5:835, ... through the state diagram, and the output sequence is
x = (111 100 010 110 100 ...), as found by writing down the sequence of
edge labels.

11. Convolutional and concatenated codes

op = (g1 4g.2)
S|={ﬂﬂ}
Si:‘ (o1)
Sy=(10)

.
.

101

Figure 11.6: State diagram for the (3,1,3) comvolutional code of Example 11.1.

The concept of stale diagram can be applied to any (g, ko, N} code with
memory v. The number of states is N, = 2% There are 2*® edges entering each
state and 2% edges leaving each state. The labels on cach edge are sequences of
length ny. As v increases, the size of the state diagram grows exponentially and
becomes very hard to handle. As we are “walking inside" the state diagram fol-
lowing the guidance of the input sequence, it soon becomes difficult to keep track
of the past path, because we travel along the same edges many times. Therefore,
it is desirable to modify the concept of state diagram by introducing time explic-
itly. This result is achieved if we replicate the states at each time step, as shown
in the diagram of Fig. 11.7. This is called a trellis diagram. 1t refers to the state
diagram of Fig. 11.6. In this trellis, the four nodes on the same vertical represent
the four states at the same discrete time ¢, which is called the depth into the trel-
lis. Dashed and solid edges have the same meaning as in the state diagram. The
input sequence is now represented by the path gg = 51,01 = 3,02 = Sgyein
and so on. Any encoder output sequence can be found by walking through the
appropriate path into the trellis.

Finally, a different representation of the code can be given by expanding
the trellis diagram of Fig. 11.7 into the tree diagram of Fig. 11.8. In this
diagram, the encoding process can be conceived as a walk through a binary tree.
Each encoded sequence is represented by one particular path into the tree. The
encoding process is guided by binary decisions (the input digit) at each node of
the tree, This tree has an exponential growth. At depth £, there will be 2¢ possible
paths representing all the possible encoded sequences of that length. The path
corresponding to the input sequence 11011 is shown as an example in Fig. 11.8,
The nodes of the tree are labeled with reference to the states of the state diagram

11.1. Convolutional codes 54
1

O
5 - on -
u.."|'|'| h

e
S: e

Sce
£=0 t=1

Figure 11.7: Trellis diagram for the (3,13 Exampl
.1.3) comvolutional code
boldface path corresponds to the input sequence 110). ” <A e

shown in Fig. 11.6.

Distance properties and transfer functions of convolutional codes

As for block codes, the error-detection and i
" . error-correction capabilitie: -
volutional code are directly related to the distance propcniesﬁ llul: cr:c?;:dcz-
:;ll.]lc::r;s”l?::mtzb th; mmm property of linear codes, we assume that the
- itted in order i ‘ormance
s aequonce ! 1o determine the perfi of the
Let us start with some definitions. Consi i uences
i . ider a pair of encoded
Ep to the depth £ into the code trellis and assume that they disagree :fctlhc first
r‘m:h.l We define the £-th order column distance d.(f) as the minimum Ham-
:nu:gc,'f d:mﬂmmut::cw::f::'lcpai{s of su;:;hmsqumlcc& For the computation of d,(£)
| pair can ¢ all-zero sequence. Therefi :
Lo consider all sequences, up 1o the depth £i . such that the .y
e in the code trellis, such that th i
agree at the first branch from the all-zero ! mtanc:y 0
g th . 0 - sequence. The column di
is the minimum weight of this set of code sequences. The column z:mna: j’:g::::
isa ::mlioc:caslng function of the depth £. By letting the value of £ go to infinit
we obtain the so-called free distance d; of the convolutional code, defined as :

a
de = lim d,(¢) (11.8)

From (11.8), we see that the free di i mum

. \ stance of the code ini Hammi
distance between infinitely long encoded sequences s the it "
mclrt :ian b: found on the code trellis by looking for those sequences (paths) that
afte verging fl.‘ﬂl‘l‘ll the all-zero sequence, merge again into it. The free disunce;
15 the minimum weight of this set of encoded sequences.

542 11. Convolutional and concatenated codes

on 111
5
no foTon
100
"l
010 001 ot
h 5
110
10 —,
101 010
54
101

Figure 11.8: Tree diagram for the (3,1,3) convolutional code of Example 11.1. The solid
path corresponds 1o the input sequence 11011.

A straightforward algorithm to compute dy is based on the following steps:
l. Sett =10
2.6 E+1

3. Compute d.(¢)

4. If the sequence giving d.(f) merges into the all-zero sequence, keep its
weight as dy and go to 6.

5. Retumn to 2

11.1. Convolutional codes 543

5y=(10) ®

§3=(01) &

Se=(11) @
£=0 =1 [}

=3 =4

Figure 11.9: Part of the trellis diagram for the (3,1,3) code of Example 11.4 for the
compuiation of the code distance properties. The trellis is the same as in Fig. 11.7, but
the labels represent here the weight of the output sequence of three digits associated with
each edge.

6. Stop.

Example 11.4 We want to reconsider the (3,1,3) convolutional code, whose mellis is
given in Fig. 11.7, to find the distances just defined. Let us consider Fig. 11.9. Part of the
trellis is reproduced in the figure, with the following features. Only the all-zero sequence
and the sequences diverging from it at the first branch are reproduced. Furthermore, each
edge is labeled with the weight of the encoded sequence. The column distance of the
code can be found by inspection. We get

A0
3

1
2|4
3|s

4|6 +dr
Since the constraint length of this code is N = 3, we have the first merge of one se-
quence into the all-zero sequence for £ = 3. However, the merging sequence has weight
6, and does not give d;(3), which is instead equal to 5. Thus, we must keep looking for

dr. For £ = 4, we have a merging sequence giving d.(4). Its weight is 6, and therefore
we conclude that dp = 6. o

The computation of dy, although straightforward, may require the examination
of exceedingly long sequences. In practice, the problem is amenable to an algo-
rithmic solution based on the state diagram of the code. We take again the case
of Fig. 11.6 as a guiding example. The state diagram is redrawn in Fig. 11.10
with certain modifications made in view of our goal. First, the edges are
labeled with an indeterminate D raised to an exponent that represents the weight

544 11. Convolutional and concatenated codes

Figure 11.10: State diagram for the (3.1,3) comvolutional code of Fig. 11.6. The labels
allow the computation of the weight enumerating function T(D).

(or, equivalently, the Hamming distance from thc all-zero sequenct’)‘c o:c tl!;e k::
coded sequence corresponding to that state transition. Funhermae~ u\e sl
at state S; has been eliminated, since it dogc not contribute to \:le::f\ :
sequence. Finally, the state S; has been (s;ll;: into ut:\:: states, one of which repre
i and the other the output ¢ state diagram. '
semliel?eusnx?:v‘v define the label of a path as the product 91’ the labe‘:'sdof all.nts
edges. Therefore, among all the infinitely many paths starting in S e ms::]:‘gt
again into Sy, we are looking for the path whose label Dis msoi% to the -
exponent. This exponent is indeed d. By inspection of Fig. 11. ! ::dms co&);
that the path S;535,5) (see Example 11.4) has label l?‘, :nd nDn o e
has d; = 6. We can define a weight ¢numerw!flg Ma:?n T(D) h: s (?:;
sequence weights as a series that gives all th.e |pformauon gboux ‘l wei :
the paths starting from S; and merging again mlo'S;. This w;nﬁt t;nwumph
ing function can be computed as the transfer function of the‘ sng;d -flo hgr:m
of Fig. 11.10. Using standard techniques for the study of dugc . gr:p s
Appendix D), the transfer function for the graph of Fig. 11.10 is given by

200~ D' _opsyphasD®s... 2 35 ADS (119)
T(D) = {—(p7+ 20" - DY) 20 st

where Ay is the number (multiplicity) of paths with weight d diverging from
state S and remerging into it later. Thus, we deduce from (11.9) that there are

: i ofien called the generating or transfer function of the convolu-
tiom-:u & un: ;ﬂm will use this denomination, t00. The term ‘;weum:a;z
function,” however, is more appropriate, because, apart from‘dac' length 0 l.hef oot
-wds.Munbein&mnformmduﬁmdcodu.;um;pdws’}mzud;sm .
A(D) of block codes defined in Eg. (10.18). The only dgﬂ'erence“u"d.m _(:) contai
hdl-mwawhmmmlulmmm 1" is missing.

545

Figure 11.11: State diagram for the (3,1,3) code of Fig. 11.6. The labels allow the
computation of the input-output weight enumerating function Ty(W, D, L).

two paths of weight 6, one path of weight 8, five paths of weight 10, and so on.
Using the terminology of Chapter 4, we can also say that the all-zero path has
two nearest neighbors at Hamming (instead of Euclidean) distance 6.

Different forms of transfer functions can be used to provide additional infor-
mation on the code properties. This is done by considering the modified graph of
Fig. 11.11. Each edge has now a label containing three indeterminates, W, D, L.
The exponent of W is the weight of the input data frame (a single digit, in this
example) that caused the transition, so that the exponent of W for a given path
will represent the Hamming weight of the information sequence that generated
it. The indeterminate D has the same meaning as before, and finally, L is present
in each edge, so that its exponent will count the length of the paths. According
to the expanded labels, we have a new input-output weight enumerating function
denoted by T3(W, D, L), where the subscript refers to the number of indetermi-
nates.

For the state diagram of Fig. 11.11 we obtain

WD'L¥1+ WL -WDL)
1~ WDL(1 + DL + WD?L? - WDAL3)
WDL*(14+WL)+W*D*L® + ... (11.10)

00 00 o0

2 2 Y CoW DL

wel dedy dw)

T3(W,D, L)

il

e

where Cy, 4 is the number of paths diverging from state S, and remerging into
it later generated by an information sequence of weight w, having weight d, and
with length £. From (11.10), we see that the two paths of weight 6 have lengths 3
and 4, respectively, and that the weights of the input sequences are 1 and 2. The
path of weight 8 has length 5, and the corresponding input sequence has weight
3. And so on. These numbers can be checked immediately in Example 11.4.

546 11. Convolutional and concatenated codes

Comparing (11.9) with (11.10), we realize that T(D) can be obtained from
W,D,L)bysetingW =L =1. .
Ta[Summm.D ']bythe Ijgthofﬂ:epaﬂiisnolimpmanl. hnl'nsme.wchav!u
third version of the input-output weight enumerating function, T,(W, D), which
contains only two indeterminates. With obvious notations, it is defined as

Ty(W,D) £ i Y. BusW*D* (11.11)

w=1 d=dy

is the number of sdimrgjngﬁummslmdmnglmou
;:l;mmi':cigm d, mawdf:]m mforrnauc: .r.nqlum of weightw. T3(W, D)
an be obtained from T3(W, D, L) by setting L = 1.

) We have thus three distinct weight generating functions. The first, T'(D),
characterizes the distance spectrum of the convolutional u:dc mM}gi'! thc pairs
(Ag, d) yielding the weights d of the code sequences and their mulnghmucs_:;
The second, the input-output weight enumerating function T2(W, D), provi
infmnaﬁmmﬂleﬂmndm'mapﬁngbﬂmninMadeﬂES?qm.bykxp}
ing distinct code sequences of the same weight generated by input sequences o
different weights. The third, T3(W, D, L), finally, adds to T; the information
about the length of sequences in terms ufnuni:ﬂruftrcllhsbmclzhcs. -

The multiplicities Az, B, 4, Cu 4, satisfy the following relationships:

oo s el
Ag=Y Bua=Y. Y Cuae, Boa=Y Cuut (11.12)

w=l we=] f=] =1
We have determined the properties of all code paths v_-rid'l reference to a sirr‘p
ple convolutional code. The same techniques can be apphed‘w any code of azﬂ:u-
trary rate and constraint length. We shall see in the next sections how the wught
enumerating functions of the code can be used to bound the eror probabilities

of convolutional codes.

11.1.2. Best known short-constraint-length convolutional codes

When considering the weight enumerating function T'(D) of a convolutional
code, it was implicitly assumed that T(D) converges. Otherwise, the c;tpa:lI
sions of (11.9) and (11.10) are not valid. This convergence cannot occur for

values of the indeterminate, because the ooefﬁcicnts_m nonnegative. In some
cases, certain coefficients are infinite, and the code is called ca:asrmpklic. An
example is given in Problem 11.4. The code is a (2.1.3) code. Its state dlﬂ::g::llln
shows that the self-loop at state S, does not increase the distance from the th-
zETo sequence, i.e., its label has an exponent of D equal to zero. 'Il-nzr::fm-e;m e
path 51535, . . . 54525, will be at distance 6 from the all-zero path no matter how

il.1. Convolutional codes s47
d (Rate 172) d; (Rate 173)
v | Systematic | Nonsystematic | Systematic | Nonsystematic
1 3 3 5 3
31 4 6 8 10
41 3 7 9 12
3 6 8 10 13
6 6 10 12 15
7 7 10 12 16 |

Table 11.1: Maximum free distances achievable with systematic codes and nonsystem-
atic noncatastrophic codes with memory v and rates 1/2 and 173,

many times it circulates in the self-loop at state S,. We have the unfortunate cir-
cumstance where a finite-weight code sequence corresponds to an infinite-weight
information sequence. Thus, it is possible to have an arbitrarily large number of
decoding errors even for a fixed finite number of channel errors. This explains
the name given to these codes.

The presence in the trellis of a seif-loop, different from the one in state 5,
with zero weight associated, is a sufficient condition for the code to be catas-
trophic. We may have, however, closed loops (i.e., paths from state S; to state
S) in the state diagram longer than one trellis branch, and with overall zero
weight. In this case, too, the code is catastrophic.

Conditions can be established on the code generators that form the transfer
function matrix (11.6) of the code to avoid catastrophic codes. For rate 1 /ng
codes, the condition is particularly simple, and states that the code generators,
in polynomial form, must be relatively prime to avoid catastrophicity (see Prob-
lem 11.5). The general conditions can be found in Massey and Sain (1968).

An important consideration here is that systematic convolutional codes can-
not be catastrophic. Unfortunately, however, the free distances that are achicy-
able by systematic codes realized with the feed-forward encoder® of Fig. 11.1
are usually lower than for nonsystematic codes of the same constraini len gth V.
Table 11.1 shows the maximum free distances achievable with systematic (gen-
erated by feed-forward encoders) and nonsystematic noncatastrophic codes of
rates 1/2 and 1/3 for increasing values of the code memory v.

Computer scarch methods have been used to find convolutional codes opti-

*We insist on the role of the encoder structure, since in Section 11,16 we will show that every
nonsystematic convolutional encoder admits an equivalent systematic encoder, provided that the
encoder is not constrained to be feed-forward,

548 11. Comvolutional and concatenated codes

mum in the sense that, for a given rate and a given constraint length, they have
the la:';ct::. possible free distag.noe. These results were obtained by Odenwalder
(1970), Larsen (1973), Paaske (1974), Daut et al. (1232}, a:rld ;eccntly by '_Chfmg
et al. (1997). While the first searches used as selection criterion the‘ma.?r.m'uza-
tion of the free distance, the recent search by Chang et al. (}99?} is aimed at
optimizing the input-output weight-enumerating _fuml.if:-n prewousl_y _mtroiduocd.
This criterion, as we will see in Section 11.1.5, 18 equivalent to minimizing the
upper bounds to bit and error event probabilities. The best codes are regmdue:d
in part in Tables 11.2 through 11.7. For the rates and number of sta.tcs_mcluded
in the search by Chang et al. (1997), the tables m_pru_clucc mose codes since they
have been found using the more complete optimization cntenon. The codes are
identified by their transfer function matrix defined in {11.6), in which the gen-
erators are represented as octal numbers. So, for exg.mplc, an (ﬂa_, kq) code will
be represented by kq x ng octal numbers organized in a matrix with k, rows and
7y columns. The tables also give, when available, upper bounds on dr derived
in Heller (1968) for codes of rate 1,/ng and extended to _l::cﬂes of rate kﬁj‘nu by
Daut, Modestino, and Wismer (1982). The Heller bound is described later in this

chapter.
Example 11.5 The rate 112 convolutional code of memory v = 3 of Table 11.2 has
generators 15 and 17, which means

Bl (1101)
g1z = (1111)

The block diagram of the encoder is shown in Fig. 11.}2. For the rate 273 code of
memory » = 3 in Table 11.6, the transfer function matrix 15

321
G=[42?]

and the block diagram of the encoder is shown in Fig. 11.13.

Punctured convolutional codes

An appropriate measure of the maximum-likelihood dgc_odcr complexity for a
convolutional code (see next section) is the number of visited edges per d:_:codc:i
bit. Now, a rate ko/ny code has 2 edges leaving and entering each trellis state
and a number of states N, = 2", where v is the memory of the encoder. Thus,
each trellis section, corresponding to kg input bits, has a total number of edges

11.1. Convoelutional codes 549

Memory | Generators in Upper bound
v octal notation | dy on dg
1 1 3 3 3
2 5 7 5 5
3 15 17 6 6
4 23 35 7) |
5 53 75 |8 8 !
6 133 171 | 10 10
7 247 371 | 10 11
8 561 753 |12 12
9 1131 1537 | 12 13
10 2473 3217 | 14 14
11 4325 647 | 15 15
12 10627 16765 | 16 16
13 27251 37363 | 16 17

Table 11.2: Feed-forward nonsystematic encoders generating maximum free distance
convolutional codes of rate 1/2 and memory v. {Chang et al., 1997),

Memory Generators in Upper bound
v octal notation dp on dg
1 1 3 3 3 5
2 3 7 7 8 8
3 13 15 17 |10 10
4 25 33 37 |12 12
5 47 53 75 |13 13
6 117 127 155 |15 15
7 225 331 367 |16 16
8 575 623 727 | 18 18
9 1167 1375 1545 | 20 20
Lo 2325 2731 3747 |22 22
11 5745 6471 7353 | 24 24
12 10533 10675 17661 | 24 24
13 21645 35661 37133 | 26 26

Table 11.3: Feed-forward nonsystemaric encoders generating maximum free distance
convolutional codes of rare 1/3 and memory v. (Larsen, 1973, and Chang et al, 1997).

550 11. Convolutional and concatenated codes

x

Figure 11.12: Encoder for the (2,1,4) convolutional code of Example 11.5.

. < ql?____., K, =

+

N
%

L + s

"o ey T U3

Figure 11.13: Encoder for the (3,2,2) convolutional code of Example 11.5.

equal to 2%**, Asa consequence, an (ng, ko, V) code has a decoding complexity
2b¢+v
ko
ncrease ity i i i 1/ng to rate ko/no
i f lexity inherent in passing from rate 1/n
c:hd;lean be :ﬁn?amw% usi:g the so-called punctured convolutional codes. A

i ined by starting from a rate
nctured convolutional code can be ob(mned y st
tl‘/‘:okou/l:? dcp:ting parity-check symbols. An example will clarify the concept.

(11.13)

Example i i of Fig. 11.14 (a). For each
11.6 Consider the 4-state convolutional encoder
inpmbileuleringﬂnencodet.Mbinmmthwgblhechnndsolhlt!;;o;e‘
poemedhumclfz.queﬂisisalsosbowninl-'ng.ll.ll»(b).Snp?oum oy
m(wwﬁyc&kd&hsgwwm?mo@.m(:nh::upmme:;&
not transmitted. In this case, faevaymmpu?humm mekm_m
mm.:mwwm.ammmmmmfamembu”“wm
Fig. 11.14 (c), and the letter “z" denotes a output ey g
i tsequenceu:lOllOl...wouldyiddx:lllm00!01'00or]

mx = 111000010 for the punctured rate 2/3 code. lnannul..way.hlghaumw
beobninedbyhtmshgthcmmbaolpuwmedmy—cbeckbus.

11.1. Convolutional codes 551
Memory Generators in Upper bound
v octal notation ds on dg
1 1 1 3 3 6 6
2 5 5 7 7 10 10
3 13 13 15 17 |13 15
4 25 27 33 37 |16 16
5 45 53 67 77 |18 18
6 117 127 155 171 |20 20
7 257 311 337 355 |22 22
8 533 575 647 711 |24 24
9 1173 1325 1467 1751 |27 27
10 2387 2353 2671 3175 |29 29
11 4767 5723 6265 7455 | 32 32
12 11145 12477 15537 16727 | 33 33
13 21113 23175 35527 35537 36 36

Table 11.4: Feed-forward nonsystematic encoders generating maximum free distance
convolutional codes of rate 1/4 and memory v. (Larsen, 1973, and Chang et al., 1997).

Memory Generators in Upper bound
v octal notation dp on dg
2 7 7 7 5 5113 13
3 17 17 13 15 1516 16
4 37 27 3 25 352 20
5 75 71 73 65 57 |22 22
6 175 131 135 135 14725 25
7 257 233 323 271 357 |28 28

Table 11.5: Feed-forward nonsystematic encoders generating maximum free distance
convolutional codes of rate 1/5 and memory v (Modestino and Wismer, 1982).

hisintaeahgtomdmthewmedmmcodcsoobnhndiseqm'valemto
memmmnedmmeodcdepi:wdinﬁgll.ls, for which one stage of the trellis
mupondsnotwosngmoftbeucﬂisoﬁhewmredcode. o

Of course, the way parity-check digits are deleted, or “punctured,” should be op-
timized in order to maximize the free distance of the code (see Problem 11.6).
Tables of optimum punctured codes can be found in Cain et al. (1979) and Ya-

552 11. Convolutional and concatenated codes

Constraint | Memory Transfer function Upper bound
length NV v matrix in octal notation | dy on dg
310 \ .
2 2 233
321
4 -
)) 427
65 1 p
3 4 o5 5
07 06 03 . _
4 5 12 01 13
0§ 13 13
7 7
4 6 13 06 17
16 13 03
8 .
3 7 95 05 34
37 31 16
3 8 23 14 35 8
97 23 16)
6 9 47 17 4l 9
63 51 34)
6 10 52 37 55) | i

Table 11.6: Feed-forward nonsystematic encoders generating maximum free disrance
convolutional codes of rate 2/3 and constraint length N. (Chang et al,, 1997).

suda er al. (1984). They yield rate kg /no codes from a single rate 1/n, “mother”

code. .
From the previous example, we can derive the :onr:!usmn Irha: a rate ka/mo
convolutional code can be obtained considering ko trellis sections of a rate 1/2
mother code. Measuring the decoding complexity as done before in (11.13), we
ohbtain for the punctured code

kg 24+
lI”j:mrm: = k. (11.14)

so that the ratio between the case of the unpunctured to the punctured solution
yields

P =..2f'. (11.15)
Dpunc 2k

which shows that, for kg > 2, there is an increasing complexity reduction yielded

11.1. Convolutional codes 553
Constraint | Memory | Transfer function Upper bound
lcngthN v matrix in octal notation | d; on dy

1 110\
2 2 (3001 3 -
320 2)
321 00
2 3 3121 4 4
2223/
012 3)
3 4 (3012 4 -
241 5)
332 2\
3 5 (5‘2'?[! 5 -
4701)
54 3 21
3 6 (4655 [-
614 3)
(02 03 04 0T
4 7 03 07 03 05 [-
\ 15 02 02 1T)
{04 06 07 OT \
4 8 01 12 05 14 7 -
\ 00 07 14 11/
{03 06 10 15\
4 9 00 16 03 13 8 -
\ 16 05 02 17)

Table 11.7: Feed-forward nonsystematic encoders generating maximum free disiance
convolutional codes of rate 3/4 and constraint length N. (Chang et al,, 1997).

by the punctured solution. Also, with puncturing, one can obtain several rates
from the same mother code, thus simplifying the implementation through a sort
of “universal” encoder, and this fact is greatly exploited in VLSI implementa-
tions.

There are at least two downsides to the punctured solution. First, punctured
codes are normally slightly worse in terms of distance spectrum with respect to
unpunctured codes of the same rate (see also Problem 11.6). Second, since the
trellis of a punctured (np, ky) code is time-varying with period kg, the decoder
needs to acquire frame synchronization.

554

11. Convolutional and concatenated codes

u Y U] Ki.2
T

>

(a)

5, o-----= - ---1D---':.

(b) ©

Figure 11.14: Encoder (a) and trellis (b) for a q'-lf,j,l' convolutional code. The trellis (c)
refers 1o the rate /3 punctured code described in Example 11.6.

11.1.3. Mmmlikgnhmddmdin:atmwhﬂmﬂmdumdth: Viterbi
algorithm

We have already seen that ML decoding of block codes is nchi:ved when rJ:;:
decoder selects the code word whose distaqn: from lht mulrnd sequence
minimum. In the case of hard decoding, the distance cm!mdemd is Lhe Hanmnnhl i
distance, while for soft decoding it is the Euclidean distance. Unhkc a :::m
code, a convolutional code has no fixed block length. But it is intuitive it
the same principle works also for mnmluﬁgm] codes. In fact, I:ach possi
encoded sequence is a path into the code trellis. Therefore, the q:flmum decoder
must choose that path into the trellis that is closest o the mcn_:ved sc?-.ul::d
Also in this case, the distance measure will be the Hamming distance for

11.1. Convolutional codes 555

Iy My My

L U W24

(a)

Figure 11.15: Encoder {a} and rrellis (b) for the (3,2,3) convolurional code equivalent
to the rate 2/3 punctured code deseribed in Example 11.6,

decoding and the Euclidean distance for unquantized soft decoding.

Let us start with hard decoding. We assume binary antipodal modulation,
and, consequently, the equivalent discrete channel is a BSC with error probability
p. Denoting with y and x!" the received sequence and the rth path in the trellis,
respectively, the optimum ML decoder must choose the path x'™) of the trellis
for which the conditional probability P(y | x'")) is maximum. We may take the
logarithm of this probability as well. Therefore, the ML decoder must find the
path corresponding to ,

Ulox-1) & maxU(gx_,) £ max P(y | x) (11.16)

K=1 =1
max [ln I Pty | xi'])] = max [Z In P(ye | xi”}]
=0 #=0

where the symbaol “=" means “equivalent.” In (11.16), & indicates the length of
the path into the treliis, or, equivalently, K'n, is the length of the binary received
sequence, y; is the sequence of n, binary digits supplied to the decoder by the
demodulator between discrete times £ and (£ + 1), and x}” is the no-digit label
of the r-th path in the code trellis between states o, and @, ;.

The maximization of the RHS of (11.16) is already formulated in terms suit-
able for the application of the Viterbi algorithm and, henceforth, it is assumed
that the reader is familiar with the contents of Appendix F. The metric for each
branch of the code trellis is defined as

Vi oe-1,00) £ In Py, | x™) (11.17)

556 11. Convolutional and concatenated codes

and therefore e
Ulog-1) = max S Vfrl (7e-1,0¢) (11.18)
=0

If we denote with a'{{’ the Hamming distance between the two sequences ¥ and
x[!'}, and use (10.15), we can rewrite (1 1.17)as

Vi (oer,00) = =d{ In : ; P 4 noln(1-p) = —edf’ = (1119)

with o and {3 positive constants (if p < 0.5).
Using (11.19) into (11.18), and dropping unessential constants, the problem
is reduced to finding

K-1
V(o) £ min 3 df” (11.20)

=0
As expected intuitively, (1 1.20) states that ML decoding requires the minimiza-
tion of the Hamming distance berween the received sequence and the path chosen
into the code trellis. This conclusion is perfectly consistent with the ML decod-
ing of block codes, provided that the infinitely-long sequences are replaced by
n-bit code words. The form of (11.20) is such that the minimization can be ac-
complished with the Viterbi algorithm {described in Appendix F), the metric on

each branch being the Hamming distance berween binary sequences.

Example 11,7 We apply the Viterbi decoding algorithm to the code whose trellis is
shown in Fig. 11.7, corresponding to the state diagram of Fig. 11.6. We know already
{see Example 11.4) that this code has dp = 6. Assume that the transmined information
sequence is 01000000 . ., whose corresponding encoded sequence is 000 111 011 001
000 000 000 000. ... Furthermore, assume that the received sequence is instead 110
111 011 001 000 OO0 000 000, . .. [t contains TWO ITOLS in the first triplet of digits, and
therefore it does not comrespond to any path through the wellis. To apply the Viterbi
algorithm, it is more useful to refer to a trellis similar to that of Fig. 11.9, in which, now,
the label of each edge corresponds to the Hamming distance between the three digits
associated to that edge and the corresponding three received bits. The successive steps
of the Viterbi algorithm are shown in Fig. 11.16 and Fig. 11.17. The algorithm, at each
step £ into the trellis, stores for each state the surviving path (the minimum distance path
from the starting state (gp = 51)) and the corresponding accumulated metric. Consider,
for example, the situation at step £ = 4. We have

Surviving
State o4 path Metric
5 5151555 2
S 515352553 5
Sy 5,5:525:52 7
54 5153545454 6

I11.1. Convolutional codes

557
Received sequence
: 110 I 111 I 01 I ool I 000 I 000 |, 000 000
_ I
f=0 ¥£=1 £=2 (=3 (=4 (=5 (=6 (=7 E;E
2
S| e—=a_——a ,‘3 5
A .0
53. . 1‘:\-2
SI-‘ - \\\ 2

- L L] [] ™ .‘.E

Figure 11.06; Viterbi decoding algeri i
: gorithm applied fo the (3,1,3) convolut
Fig. 11.6. The decoded sequence is 01000000.) comotinanel code of

558

11. Convolutional and concatenated codes

Received sequence
110 , 111 011 001 000 000 , 000 000
5 (=6 (=7 ¢

n 4
o

t f t t
=0 ¢€=1 (=2 ¢€=3 (=4 (=

%
e s

Figure 11.17: Continuation of Fig. 11.16: Viterbi decoding flgon'thm applied 1o the
(3.1,3) convolutional code of Fig. 11.6. The decoded sequence is 01000000.

i distance) is 5151535251,
Theref { = 4, the ML path (the one with the smallest ;
mummmmkoxw(fowmwmmedﬁ
on the trellis). Consequently, in spite of the two initial channel erors, already at
the correct information sequence is identified. lncnseofaue.n..a, wbentwos:
:?m states exhibit the same lowest path metric, any of the corresponding paths can

1 -
lamwehdunﬂhowthellprihmmwdsommcpf.u@wo:rn%m:l:cf:xc
ation at £ = 5. Consider first the state o = S;. From the trellis diagram of Fig. 11.7,

mveﬁfymamemslanbemhdeiwﬁmthemsl with a transition corre-

11.1. Convolutional codes 550

spoudingwmencodeduipktm.aﬁmthem&wimlmiﬁmmpondhg
10 an encoded triplet 001. The received triplet during this transition is 000. Therefore,
ﬁom(ll.l9)a:d(ll.18)mhave.aswundidalcsloU'(o;)

U'(US)'ﬂ:S'. = U'(a‘”‘d=$| -+ Vsu)(sl'sl) =240=2
Ulos)les=s, = U'lealoses, +V5"($2,51) =5+1=6

'lhus.theminimum—dismoepﬂhludingms;a(t=500mesfmm51.andlhem°
sition from S, is dropped. The metric U'(os) at Sy will be 2, and the surviving path
will be that of o4 = S (i.e., 0100) with a new 0 added (i.e., 01000). The interesting
fcamreistha(atlusnllmnivingpaﬂummcuma. = S5). This means that at
thissteptbeﬁrstfourinﬁxm&iondigiumunhnclydecodedintbeconectwayandd\e
two channel errors are corrected. Q

For a general (ng, ko, N) convolutional code, there are 2* states at each step
in the trellis. Consequently, the Viterbi decoding algorithm requires the storage
of 2” surviving paths and 2" metrics. At each step, there are 2% paths reaching
each state, and therefore 2 metrics must be computed for each state. Only
one of the 2% paths reaching each state does survive, and this is the minimum-
distance path from the received sequence up to that transition. The complexity
of the Viterbi decoder, measured in terms of number of visited trellis edges per
decoded bit, is then 25

ko
and grows exponentially* with ko and v. For this reason, practical applications
are confined to the cases for which kg + v is in the range 2 10 15.° The Viterbi
algorithm is basically simple, and has properties that yield easy VLSI implemen-
tations. Actually, Viterbi decoding has been widely applied and is presently one
of the most practical techniques for providing large coding gains.
The trellis structure of the decoding process has the following consequence.
If at some point an incorrect path is chosen, it is highly probable that it will
merge with the correct path at a later time. Therefore, the typical error sequences
of convolutional codes, when decoded by a Viterbi decoder, result in bursts of
errors due to the incorrect path diverging from the correct one and $00n merging
again into it. Typical bursts have a length of a few constraint lengths,
One final consideration concerns the technique used to output the decoded
digits. The optimum procedure would be to decode the sequence only at the end

D (11.21)

“The exponential growth with ky can be avoided using punctured codes, as seen previously.
*To our knowledge, the most complex implementation of the Viterbi algorithm concerns a
code with & = 1 and v = 14 for deep-space applications (see Dolinar, [988),

560 11. Convelutional and concatenated codes

Figure 11.18: Simulated bit error probability versus the decoding delay for the decoding
of the rate 1/2 (2,1,7) cormvolutional code of Table 11.2. The signal-to-noise ratio £/Ny
is 3dB.

of the whole receiving process. However, this would result in unacceptably long
decoding delays and excessive memory storage for the surviving sequences. We
have seen in the example that all surviving paths tend to merge into one 51ng!c
path when proceeding deeply enough into the trellis. A solution to this problem is
thus to use the truncated Viterbi algorithm, described in Appendix F. This forces
the decision on the oldest symbol of the minimum distance path after a fixed and
sufficiently long delay. Computer simulations show that a delay on the order of
5 results in a negligible degradation with respect to the optimum performance.
This is shown in Fig. 11.18, where we report the bit error probability evaluated
by simulation as a function of the decoding delay for the constraint length 7, rate
1/2 code of Table 11.2.

An important feature of the Viterbi algorithm is that soft-decision decoding,
unlike for block codes, requires only a trivial modification of the procedure dis-
cussed previously. In fact, it is sufficient to replace the Hamming metric with
the Euclidean metric and let all the other decoding operations remain the same.
Therefore, the implementation complexity for soft-decision decoding is not sig-
nificantly different from the hard-decision case.

Let us now derive an expression for the branch metric (11.17) in the case of

unquantized soft decisions. In practice, 3-bit quantization of the branch metrics
is sufficient to obtain almost ideal performance (Jacobs, 1974).
If {y;e}72, is the set of received demodulator outputs in the case of binary

[——————— e

11.1. Convolutional codes 561

antipodal modulation (with transmitted and received energy £) and assuming
that the £th branch of the rth path has been transmitted, we have

yje = VE(2z - 1) +v; (11.22)

which is obtained from (10.81). Here, I;—;J is a binary digit and v; is a Gaussian
RV with zero mean and variance N, /2. Therefore, from (11.22) we get

(r) . (r)
Plye| ") = TI Plusel=3/)
J=1
- 2
= Ao TR L(C il I PP
o1 VNG MNa ’

Inserting (11.23) into (11.17) and neglecting all the terms that are common to all
branch metrics, we get

g
Vi (oer,o0) = 3 ye(2aly — 1) (11.24)
J=1
This is the branch metric to be used by the soft-decision Viterbi decoder. It is
called, for obvious reasons, correlation metric. The best path would correspond
in this case to the highest metric. As an alternative, one can also use the distance
metric, which should be minimized.

11.1.4. Other decoding techniques for convolutional codes

The computational effort and the storage size required to implement the Viterbi
algorithm limit its application to convolutional codes with small-medium values
of the memory v (typically, 1 < v < 14). Other decoding techniques can be
applied to convolutional codes. These techniques preceded the Viterbi algorithm
historically, and are quite useful in certain applications. In fact, they can use
longer code constraint lengths than those allowed by practical implementations
of the Viterbi algorithm, and hence yield larger coding gains.

Sequential decoding technigues

As already pointed out, the operation of a convolutional encoder can be described
as the choice of a path through a binary tree in which each path represents an
encoded sequence. The sequential decoding techniques (in their several variants)
share with the Viterbi algorithm the idea of a probabilistic search of the cerrect
path, but, unlike the Viterbi algorithm, the search does not extend to all paths

562 11. Convelutional and concatenated codes

that can potentially be the best. Only some subsets of pnths_ that appear }o br;
the most probable ones are extended. For this reason, sequential decoding is :1:1
an optimal (ML) algorithm as the Viterbi algnnthm: NCVEI'.'I'IEH:IES. uq:s lof
decoding is one of the most powerful tools for decnq:ng convolutional ::h srh 1
long constraint length. Its error performance is not significantly worse than tha
” “m:llmndm-ng- al-and technique for
ing approac be conceived as a trial-and-error
s:ar’rdl::ng out rh: correct phatf:ilnto the tree. Let us consider a qun.liltativc exam-
ple by looking at the code tree of Fig. 11.8. In the absence of nmse,l lh:hw:u;e
sequences of length ng = 3 are received without errors. Consequently, o
ceiver can start its walk into the tree from the root and lheq fo!]owl a Pmdu'r
simply replicating at each node the encoding process and making lt_i:;nﬂ": TI-:;
sion after comparing the locally generated sequence with the recei W‘w":'-:\v* t e
transmitted message will be recovered directly from the path follo nto
tree. |
The presence of noise introduces errors, and hence the decoder can find ll_selt'
in a situation in which the decision entails risk. This happens when the m-::ew:;
sequence is different from all the possible alternatives that are locally ir.nenuw
by the receiver. Consider again the code tree of Fig. 11‘_8. and assume ﬂl;;“
transmitted sequence is the one denoted by tl'u:_hmy line. Let, for ins \
the received sequence be 111 100 111.... Starting from the root, the ﬁg;t:;o
choices are not ambiguous. But, when reaching the second-order node, m;
coder must choose between the upward path (sequence 010) :mdlthl: t:uwnwnd’
path (sequence 101), having received the sequence 110. The Chl?ll‘.‘cdi at sou e
more reasonable is to go downward in the tree, since the Hamming stan:f:e
tween the received and locally generated sequences is only one, instead of l\:;
With this choice, however, the decoder would proceed on a wrong path in ¢
tree, and the continuation would be in error. If the lrunr:lh metric is the Hanumt;E
distance, the decoder can track the cumulative Hamming distance betw:eaen
received sequence and the path followed into the tree, and eventually nun;::::
this distance grows higher than expected. In this case, the d.cmderu;e 1[11:1-
togoh:l:lom:nndcatwhi:hanappumtmvfumndcmgulwi:“m
choice. This process of going forward and backward into the tree is the raf he
behind sequential decoding. This movement can be guided by mgd_l.l}rm; he
metric of the Viterbi algorithm (the Hamming distance for hard dm_:muns] wit
the addition of a negative constant at each branch. The value of this nm“ﬁ,:"”
sclected such that the metric for the correct path.dnmamm the average, It:
that for any incorrect path increases. By companng the am.!:mua.ted metric wi
a moving threshold, the decoder can detect and discard the incorrect paths.

Sequential algorithms trade with the Viterbi algorithm a larger decoding de-

I1i.1. Convolutional codes 563

lay with a smaller storage need. Unlike for the Viterbi algorithm, both the de-
coding delay and the computational complexity are not constant. Instead, they
are random variables that depend, among other factors, on the signal-to-noise
ratio. When there is little noise, the decoder is usually following the correct
path requiring only one computation to advance one node deeper into the code
tree. However, when the noise becomes significant, the metric along the correct
path may increase and be higher than the metric along an incorrect path. This
forces the decoder to follow an incorrect path, so that a large number of steps
(and computations) may be required to retum to the correct path. To make this
stalement quantitative, we refer to the cutoff rate of the channel R, already in-

troduced in Section 10.4.2, When the code rate R, is larger than the channel

cutoff rate, the average computational load of sequential decoding, defined as

the average number of computations per decoded branch, is unbounded. For this

reason, Ry is often called the compurational cutoff rate, as it indicates a limit
on the code rates beyond which sequential decoding becomes impractical (for a
proof of these statements, see Lin and Costello, 1983).

The M-algorithm

The idea of the M-algorithm is to look at the best M (M less than the number
of trellis states N,) paths at each depth of the trellis, and to keep only these
paths while proceeding into the trellis (no backtracking allowed). For M =
Ny, it becomes the Viterbi algorithm. The choice of M trades performance for
complexity. Unlike sequential decoding, the M-algorithm has the advantage

of fixed complexity and decoding delay. For details on the M -algorithm, see
Anderson and Mohan (1991).

Syndrome decoding techniques

Unlike sequential decoding, these techniques are deterministic and rely on the
algebraic properties of the code. Typically, a syndrome sequence is calculated
(as for block codes). It provides a set of linear equations that can be solved 10 de-
termine the minimum-weight error sequence. The two most widely used among
such techniques are feedback decoding (Heller, 1975) and threshold decoding
(Massey, 1963). They have the advantage of simple circuitry and small decod-
ing delays, thus allowing high-speed decoding. However, since the allowable
codes presenting the required algebraic properties are rather poor, only moderate
coding gain values are achievable with these techniques.

564 11. Convolutional and concatenated codes

The qtg_x_lgg_qm_-n-posleriori {MAP) symbol d:m_ﬂlng algorithm

The Viterbi algorithm performs the ML estimate of the transmitted sequence. Its
output is the code sequence closest in some sense {Hamming or Euclidean dis-
tance) to the received one. The Viterbi algorithm thus minimizes the sequence er-
ror probability when the information sequences are assumed to be equally likely.

In the most general case, the decision rule minimizing the it error probabil-
ity should be based on the maximization of the a posteriori probabilities (APP)
of eggh individyal hit in the sequence

Plue|y), k=0,...,K—1 (11.25)

where v, is the transmitted bit at time k, y is the entire received sequence, and
K is the sequence length. We recall that MAP decoding also differs from ML
decoding in that it does not assume equally likely information symbols,

_ The simplest algorithm to compute the a-posteriori probabilities (11.25) was
proposed by Bahl ef al. (1974), but until recently it received very little attention
because its complexity exceeds that of the Viterbi algonthm, yet the advantage
in bit error rate performance is small. It is described in Appendix F under the
name of BCJR algorithm, from the initials of the researchers who proposed it.

The big difference between Viterbi and APP algorithms consists in their out-
puts. The Viterbi algorithm outputs a hard decision on the transmitted digits,
whereas the APP algorithm provides the a posteriori probability, which may be
interpreted as a soft estimate of the transmitted digits reliability, actually the best
possible one. When a convolutional code is employed in a concatenated coding
scheme, like those examined in the last section of this chapter, this difference
becomes fundamental, and explains the recent great revival of interest for APP
algorithms.

As a final, important comment, we can say that the Viterbi algorithm, and
consequently also the other algorithms briefly described previously, is applica-
ble to the decoding of any code whose code words can be associated to paths in a
trellis. As a consequence, the soft decoding of block codes, which can be repre-
sented by time-varying trellises (see, for example, Wolf, 1978), can be performed
by using the Viterbi algorithm.

11.1.5. Performance evaluation of convolutional codes with ML decoding

[n this section, we will derive upper bounds to the error event and bit error prob-
abilities of a convolutional code. Since the results are based on the union bound,
they provide tight approximations to the actual probabilities for medium-high
signal-to-noise ratios. For lower signal-to-noise ratios, these bounds diverge,

11.1. Convolutional codes ' 565

Figure 11.19: Treilis paths shawing possible error events af a Virerbi decoder.

and one should resort to simulation,® or to more isti i

. A sophisticated techniques, like
the one c_iess:dbcd in Pu!tym_v (1996) and references therein. Mormvgr. we do
not consider the suboptimality of the truncated Viterbi algorithm involved in

:g;:?s premature decisions (see Hemmati and Costello, 1977, and Onyszchuk

Error event probability

Before discussing ted!mquas for bounding the bit error probability P(e), it is
necessary to analyze in some detail the concept of error event in the Viterbi
decoding. Since convolutional codes are linear and the uniform error propert

holds for them, we can assume that the all-zero sequence has been :rnnm:‘urj
and evaluate error probabilities under this hypothesis. We denote as the correct
path the all-zero horizontal path at the top of the trellis diagram (Fig. 11.19).

The decoder bases its decisions on the received noisy version of the transmit-

ted sequence and can choose a path different from the correct one on the basis
of the mxux_nu]atc-dnﬁric. For a given discrete time k, an error event is de-
ﬁnor:i as an incorrect path segment that, after diverging from the corect path at
trellis d.cpﬂl k. merges again into it at a successive depth. Since the trellis of a
convolutional code is time-invariant (with the exception of the initial transient
fmm_ the zero state to all other states), the performance will not depend on the
starting time k of the error event, which can thus be omitted. Fig. 11.19 shows
three error events starting at nodes 1, 7, k, and corresponding to the sequences
X2, X3, Xq. Notice also that the dotted path, comresponding to the sequence x;

diverging at node 1', may have a metric higher than the correct path and yel nui
be selected, because its accumulated metric is smaller than that of the solid path
comresponding to the sequence x;.

EFortunately, simulation is required for low si probabi
_ : v signal-to-noise ratios, where the emor ili=
ties are high, say greater that 107, so that the required computer time is often quite reasonable.,

566 11. Comvolutional and concaténated codes

“ " fact that, when the decoder chooses

Tl'n‘- et :rn:;::::; n:ln:::rt::n:r :he errors nccumu!ntud during the pe-

o mmm pmnce cannot be corrected, since, after remerging, the currec; ::nd

ot e nt Ths will accumulate the same metrics. We may concll._ld: n;dn E

cmmmr sary urd sufficient condition for an error event to oceur at 4 mmn \ nd;s

1.tlml the metric of an incorrect path, diverging from the correct omthnt una m:w
accumulates higher metric increments than the comrect path over the

Pﬁtl':[ﬁm:::.m define an error event at a certain node as the set of all paths

diverging from the correct path at that node, and having a path metric larger than

MT:T::!::I: by x4 a path of weight d diverging from the all-zera path, by

the correct path (all-zero sequence), and by P(x; — x4) the ﬁ;m.::{::}-rzrf
;:)blbilil}r between the two sequences’ x,; and X4, then the probability
an error event can be upper bounded, using the union bound, as

P{G} < f: A‘PI:I]_ -+ x4) [112\6}
d=dy

i iverging from the all-zero path. To
is the number of paths of weight d diverging -
::cue;‘ h:rsthct.l:::e must distinguish the cases of hard and soft-decoding.

Hard decoding Using (10.76), we have

P(xu-ua'.li[’,(dp{l—p}ld (11.27)

. .. i
Introducing (11.27) into (11.26) and ru:a]lm_g the definition (11.9) of the weigh
enumerating function T'(D), we finally obtain

:
P(e) < T(D)lp /astim (11.28)

This result emphasizes the role of the weight enumerating ﬁuﬁls::u‘l:ﬂulz
the computation of the probability P{e) of an error event, paral
obtained for the word error probability of block codes.

. = -
"

pairw in Chapter i . Here, it
e e P e e e e e e come
mpmmmmm:muw!uymmmmn

SEQUENCE X .

11.1. Convolutional codes o

serial transmission of the coded bits using a binary antipodal modulation with
energy £y, we can write the pairwise error probability as

d
P{m—in]=%m‘¢ (1('__.;';& ' (11.29)

where R, is the code rate. Substitting the right-hand side of (11.29) into (11.26),
we get the union bound to the error event probability

23 dR.Z,
Ple) < EE,‘ Amfc(N (1130)

Using the inequality (A.5) Lerfe(\/7) < €77, we can express (11.30) as

1
Ply<zT@)| . .- (11.31)
The difference between the two bounds (11.30) and (11.31), is that the first
is tighter. However, the second can be evaluated from the closed-form knowl-
edge of the weight enumerating function, whereas the first requires the distance
spectrum of the code, i.e., the pairs {4, d}§ 4 which can be obtained from the
power series expansion of T'(D). Usually, a small number of pairs are sufficient

to obtain a close approximation. A bound in closed form tighter than (11.31) can
also be derived (see Problem 11.7).

Bit error probability

The computation of an upper bound to the bit error probability is more difficult,
and, in fact, the result is not always rigorously derived in textbooks.

Consider the trellis section between time m and time m < 1, and assume that
the all-zero sequence has been transmitted. Let E{w,d, £} be the event that an
error event with input information weight w, code sequence weight d, and length
£is active, i.e., has the highest path metric, in the interval (m, m + 1). Alsa,
denote with e(w, d,) an error event starting at time m with input information
weight w, code sequence weight d, and length ¢.

The probability of the event E(w, d, £) is easily bounded as

P|E(w,d,&)] < €Ple(w,d, &)] = €C, 40P (x; = x4) (11.32)
where Ple(w,d, £)] is the probability of an error event produced by an incorrect

path x4 of weight d, length £ and input weight w, and C,, 44 is the multiplicity of
such incorrect paths. The first inequality in (11.32) relies on the fact that, to be

