
9
you did your strong nine furlong mile in slick and slapstick record time

LDPC and turbo codes

Classes of codes defined on graphs exist that can approach Shannon’s ca-
pacity bound quite closely, and with a reasonable decoding complexity. All
these codes are obtained by connecting simple component codes through an
interleaver. Decoding consists of iterative decodings of these simple codes.
In this chapter we describe in some detail turbo codes and low-density parity
check codes, with special attention to their performance and their decoding
algorithms. Their distance properties are also given some attention.
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9.1 Low-density parity-check codes

A low-density parity-check (LDPC) code is a long linear block code whose parity-
check matrixH has a low density of ones. Specifically,H is sparse, i.e., contains a
small fixed numberwc of ones in each column and a small fixed numberwr of ones
in each row. If the block length isn, we say thatH characterizes an〈n,wc, wr〉
LDPC code. These codes may be referred to asregular LDPC codes to distinguish
them fromirregular codes, whose values ofwc andwr are not constant. The matrix
H of the latter hasapproximatelywr ones in each row andwc ones in each column.

The normal graph of a (regular) LDPC code is shown in Fig. 9.1.With this
representation, we have that an LDPC code is a binary linear code such that every
coded symbol participates in exactlywc parity-check equations, while each one
of them sum-check equations involves exactlywr bits. For consistency, we have
nwc = mwr.

+

=

=

=

π

+

......

1

2

n

1

m

Figure 9.1:Normal graph of a regular〈n,wc, wr〉 LDPC code.

It follows from the definition of an LDPC code thatH hasnwc/wr rows: in
fact, the total number of ones inH is nwc; dividing bywr, we obtain the number
of rows. SinceH is in general anm× n matrix, if H has full rank the code rate is

n−m

n
= 1 − m

n
= 1 − wc

wr
(9.1)

The above equality yields the constraintwc ≤ wr. Notice that the actual rateρ of
the code might be higher thanm/n = wc/wr, because the parity-check equations
summarized byH might not be all independent. We callρ∗ , 1 − wc/wr the
design rateof the code.
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Example 9.1

The parity-check matrix of a〈20, 3, 4〉 LDPC code withρ∗ = 1/4 is shown below.

H =




1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1




In this example we observe thatH can be viewed as composed of three subma-
trices, each of which contains a single “1” in each column. The second and third
submatrices are obtained from the first one by permuting the column order. �

9.1.1 Desirable properties

While the ultimate quality of an LDPC code is defined in terms of its rate, cod-
ing gain, and complexity, some simple considerations may guide the selection of a
candidate code. First, for good convergence properties of the iterative decoding al-
gorithm, the Tanner graph of the code should have a large girth. In particular, short
cycles must be avoided. (Observe that the shortest possiblecycle in a bipartite
graph has length4, as shown in Fig. 9.2 along with the structure of the parity-
check matrix that generates it.) Next, regularity of the code eases implementation.
Finally, for small error probability at highEb/N0 on the AWGN channel, the min-
imum Hamming distance of the code must be large. This is especially interesting,
because LDPC codes are known to achieve a large value ofdH,min. Roughly speak-
ing, if wc > 2 this grows linearly with the block lengthn, and hence a large random
LDPC code will exhibit a largedH,min with high probability. More specifically, it
has been proved [9.12,9.18] that, for a large enough block lengthn, an LDPC code
exists with rateρ ≥ 1− 1/λ, and minimum distancedH,min ≥ δn, for anyδ < 0.5
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+

+

Figure 9.2:Four-cycle in a Tanner graph, and corresponding parity-check matrix.

that satisfies the inequality

−δ log δ − (1 − δ) log(1 − δ) < 1/λ

9.1.2 Constructing LDPC codes

Several techniques for the design of parity-check matricesof LDPC codes have
been proposed and analyzed. They can be classified under two main rubrics:ran-
domandalgebraicconstructions. Here we provide an example of each.

Random constructions

These are based on the generation of a parity-check matrix randomly filled with
0s and1s, and such that the LDPC properties are satisfied. In particular, after one
selects the parametersn, ρ∗, andwc, for regular codes the row and column weights
of H must be exactlywr andwc, respectively, withwr andwc small compared
to the number of columns and rows. Additional constraints may be included: for
example, the number of1s in common between any two columns (or two rows)
should not exceed one (this constraint prevents four-cycles).

In general, randomly constructed codes are good ifn is large enough, but their
performance may not be satisfactory for intermediate values ofn [9.11,9.16]. Also,
usually they are not structured enough to allow simple encoding.

A method for the random construction ofH was developed by Gallager in [9.12].
The transpose of the matrixH of a regular〈n,wc, wr〉 has the form

H′ =
[
H′

1 H′
2 · · ·H′

wc

]
(9.2)

whereH1 hasn columns andn/wr rows, contains a single1 in each column, and
its ith row contains1s in columns(i − 1)wr + 1 to iwr. MatricesH2 to Hwc are
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obtained by randomly permuting (with equal probabilities)the columns ofH1. The
matrixH of Example 9.1 is generated in this way, although there the permutations
are not random.

Another algorithm for the generation of the parity-check matrix of an〈n,wc, wr〉
LDPC code works as follows:

Step 1. Seti = 1.

Step 2. Generate a random binary vector with lengthnwc/wr and weightwc. This
is theith column ofH.

Step 3. If the weight of each row ofH at this point is≤ wr, and the scalar product
of each pair of columns is≤ 1 (four-cycle constraint), then seti = i + 1.
Otherwise, go to Step 2.

Step 4. If i = n, then stop. Otherwise, go to Step 2.

Since there is no guarantee that there are exactlywr 1s in each row ofH, this
algorithm may generate an irregular code. If a regular code is sought, suitable
modifications to the procedure should be made.

Algebraic constructions

Algebraic LDPC codes may lend themselves to easier decodingthan random codes.
In addition, for intermediaten, the error probability of well-designed codes alge-
braic codes may be lower [9.1,9.20].

A simple algebraic construction works as follows [9.10, 9.13]. Choosep >
(wc − 1)(wr − 1), and consider thep× p matrix obtained from the identity matrix
Ip by cyclically shifting its rows by one position to the right:

J ,




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
0 0 0 0 · · · 1
1 0 0 0 · · · 0




The`th power ofJ is obtained fromIp by shifting cyclically its rows bỳ mod p
positions to the right. After definingJ0 , Ip, construct the matrix

H =




J0 J0 J0 · · · J0

J0 J1 J2 · · · Jwr−1

J0 J2 J4 · · · J2(wr−1)

· · ·
J0 J(wc−1) J2(wc−1) · · · J(wc−1)(wr−1)



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This matrix haswcp rows andwrp columns. The number of1s in each row and
column is exactlywr andwc, respectively. Hence, this construction generates a
〈wrp,wc, wr〉 LDPC code. It can be proved that no4-cycles are present.

Combining random and algebraic constructions

A technique that combines random and algebraic construction is proposed in [9.20].
Start with them×n parity-check matrixH(0) of a good “core” LDPC code. Next,
substitute for each1 in H(0) a p1 × p1 permutation matrix chosen randomly. We
obtain the newmp1 × np1 parity-check matrixH(1). Since the probability of
repeating the same permutation matrix in the construction of H(1) is 1/p1!, it is
suggested to choosep1 ≥ 5. The construction is repeated by substituting for each
1 in H(1) ap2 × p2 random permutation matrix, which yields themp1p2 × np1p2

parity-check matrixH(2). This procedure can be repeated. In [9.20], it is shown
that this construction preserves the girth and the minimum Hamming distance of
the core code.

9.1.3 Decoding an LDPC code

Decoding can be performed using the sum-product or the max-sum algorithm as
indicated in previous chapter. Here, however, since the Tanner graph of the code
has cycles, the algorithm is not exact, nor does it converge in a finite number of
steps. An iterative algorithm can be devised, which computes alternatively the
messages associated with both directions of each branch, and stops according to
a preassigned criterion. A possible stopping rule is the following: set x̂i = 1
if p(xi = 1 | y) > p(xi = 0 | y), and x̂i = 0 otherwise. If the vector
x̂ , (x̂1, . . . , x̂n) is a code word (i.e., all parity checks are satisfied) then stop.
Otherwise, keep on iterating to some maximum number of iterations, then stop and
declare a failure.

Fig. 9.3 represents, in a schematic form, the two basic message-passing steps
when an iterative version of the sum-product algorithm is used for decoding an
LDPC code. We assume here that the messages are normalized soas to represent
probabilities, and use a result from Problem 4 of Chapter 8. The algorithm starts
with the intrinsic probabilitiesνi , p(yi|xi), and with uniform messages coming
out of check nodes:µ` = (0.5, 0.5) for all `. Application of the SPA first computes
the messages passing from symbol nodes to check nodes, then from check nodes to
symbol (repetition) nodes. These two steps represent a single iteration of the SPA.

Fig. 9.4 shows the performance of two LDPC codes.
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Figure 9.3:Decoding an LDPC code: message-passing from a symbol node toa
check node, and vice versa.

A simple suboptimum decoding algorithm: bit flipping

An LDPC code can be suboptimally decoded by a simple iterative technique, called
the bit-flipping algorithm. First, the symbols are individually “hard-decoded” by
transforming the channel observations into1s and0s, so that the received vector
y is transformed into the binary vectorb. Consider the syndromeHb′, whose
components can be seen as the results of the sums computed in the right part of
the graph. Each component ofb affectswc components of the syndrome. Thus, if
only one bit is in error, thenwc syndrome components will equal1. The bit-flipping
algorithm is based on this observation, and works as follows. Each iteration step
includes the computation of all check sums, and the computation of the number
of unsatisfied parity checks involving each one of then bits of b. Next, the bits
of b are flipped when they are involved in the largest number of unsatisfied parity
checks. Steps are repeated until all checks are satisfied, orafter a predetermined
number of iterations.

Example 9.2

For illustration purposes, consider the rate-1/3 code (not exactly an LDPC code, as
n is not large enough to yield a sparseH) with parity-check matrix

H =




1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1




corresponding to the Tanner graph of Fig. 9.5. Let the observed vector be(.1, .3,−1.2, .02, .5, .9).
The binary6-tuple obtained by hard-decoding is(001000). This is not a code word.
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Figure 9.4:Performance of rate-1/4 codes. Code B [9.7] is an irregular LDPC code
with n = 16,000. Code C [9.18] is a regular LDPC code withn = 40,000. For
reference’s sake, Code A is a turbo code withn = 16,384 (see Fig. 9.17 for further
details). The leftmost curve is the Shannon limit forρ = 1/4 and unconstrained
AWGN channel, as derived in Problem 8 of Section 3 (see also Fig. 1.5).

The first iteration shows that the parity checks that fail are1 and4, which is inter-
preted as an error located among the symbols whose nodes are connected to adders
1 and4. Now, symbol4 corresponds to no failed check, symbols1, 2, 5, and6
correspond to1 failed check, and symbol3 to 2 failed checks. We flip the third bit,
thus obtaining the code word(000000), which is accepted, as all parity checks are
satisfied. �
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Figure 9.5:Tanner graph of an LDPC code.

9.2 Turbo codes

The general scheme of a turbo code based on “parallel concatenation” of two con-
volutional codes was shown in Fig. 8.14. There,C1 andC2 are binary terminated
convolutional codes or block codes, realized in systematicform. Let the generator
matrices ofC1 andC2 beG1 = [I P1] andG2 = [I P2], respectively. If the
vector to be encoded isu, the first encoder outputs[u c1], with c1 , uP1. The
interleaverπ applies a fixed permutation to the components ofu, and sendsπu to
the second encoder, which generates[πu c2], with c2 , (πu)P2.

If C1 andC2 have ratesρ1 andρ2, respectively, the turbo-code rate is given by

ρ =
ρ1ρ2

ρ1 + ρ2 − ρ1ρ2
(9.3)

To prove this, neglect the effect of the trellis termination, and observe that ifk bits
enter the encoder of Fig. 8.14, thenu containsk bits,c1 containsk/ρ1−k bits, and
c2 containsk/ρ2 − k bits. The ratio betweenk and the total number of encoded
bits yields (9.3). Note that ifρ1 = ρ2 we simply have

ρ =
ρ1

2 − ρ1
(9.4)

The most popular turbo-code design hasρ1 = ρ2 = 1/2 (typically obtained with
C1 = C2), and henceρ = 1/3 [9.3, 9.4]. If the even bits ofc1 and the odd bits of
c2 are punctured, thenρ1 = ρ2 = 2/3, andρ = 1/2.
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Figure 9.6:Encoder of a parallel-concatenated turbo code with recursive compo-
nent encoders, andρ = 1/3.

�

Figure 9.7:General scheme of a serially-concatenated turbo code.

The most common form of convolutional encoder used in general is nonsystem-
atic and polynomial (as for example the rate-1/2 encoder of Fig. 6.3). Such an
encoder cannot be used as a constituent of a turbo code, whichrequires system-
atic encoders. Nonrecursive (i.e., feedback-free) encoders should also be ruled out,
because the resulting turbo code would exhibit poor distance properties. A turbo
encoder including two systematic recursive codes is shown in Fig. 9.6.

Serially-concatenated turbo codes

A serially-concatenated turbo code is obtained by cascading two convolutional en-
coders as shown in Fig. 9.7.Co is called theouter code, andCi the inner code.
Their rates areρo andρi, respectively. In practice, the outer code may be chosen
as nonrecursive and nonsystematic or recursive and systematic; however,Ci should
be recursive and systematic for better performance. The rateρ of the concatenated
code is simply given by the product of the two rates:

ρ = ρoρi (9.5)
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For example, the rateρ = 1/2 can be obtained by choosing two component code
ρo = 2/3 andρi = 3/4. Notice that this choice involves constituent codes with
higher rates and complexity than for a rate-1/2 turbo code with parallel concatena-
tion.

9.2.1 Turbo algorithm

Although, in principle, turbo codes can be optimally decoded by drawing their
trellis and using Viterbi algorithm, the complexity of the resulting decoder would
be generally prohibitive. Using an iterative version of thesum-product algorithm
(the “turbo algorithm”) provides instead extremely good performance with mod-
erate complexity. This algorithm is conceptually similar to the message-passing
algorithm described for LDPC codes, consisting in iterative exchanges of mes-
sages from symbol nodes to check nodes and vice versa (see Fig. 9.3). With turbo
codes, the more complex structure of their factor graph (which includes convolu-
tional codes in lieu of symbol nodes and check nodes: see Fig.8.15) calls for a
more complex algorithm. In fact, it requires the separate decoding of the compo-
nent codes: each decoder operates on the received data, forms an estimate of the
transmitted message, and exchanges information with the other decoder. After a
number of iterations, this estimate is finally accepted. Thealgorithm is run for a
fixed number of iterations, or can be stopped it as soon as a code word is obtained
(seesupra, Section 9.1.3).

Fig. 9.8 summarizes the general principle, whereby two decoders (one forC1

D
1

D
2 channel

observation

channel
observation

Figure 9.8: General scheme of turbo decoding algorithm. Herey1 and y2 are
channel observations generated by two independent encodings of the same block
u .

and one forC2) exchange messages back and forth: this decoding mechanismis
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reminiscent of the working of a turbo-charged engine, whichsuggested the name
“turbo” for the algorithm. Although relatively little is known about its theoreti-
cal convergence properties (which will be examinedinfra, in Section 9.2.4), its
behavior with graphs having loops is surprisingly good.

To describe the turbo algorithm, we first examine the behavior of the two de-
coders of Fig. 9.8, and, in particular, the messages they exchange under the SPA.
Consider a linear binary block codeC with lengthn andk information symbols
(if a convolutional code is used, let its termination generate a block code with the
above parameters). Here we compute explicitly the a posteriori probabilities of the
code symbols, examining separately systematic and a nonsystematic codes.

SISO decoder: Systematic codes

If the code is systematic, the firstk entries of each wordx coincide with the infor-
mation symbolsu. We writex = (u1, . . . , uk, xk+1, . . . , xn), and we have

p(x) = [x ∈ C]

k∏

i=1

p(ui)

Hence, under our usual assumption of a stationary memoryless channel,

p(x | y) ∝ [x ∈ C]
k∏

i=1

p(yi | ui)p(ui)
n∏

j=k+1

p(yj | xj) (9.6)

To compute the APPs of the information symbolsui, i = 1, . . . , k, (and hence to
soft-decodeC) we combine, according to (9.6), the “a priori information”p(u1), . . . , p(uk)
on the source symbols and the “channel information”p(y | x) into one intrinsic
message (Fig. 9.9).

To describe the message-passing turbo algorithm it is convenient to introduce
a soft-input, soft-output(SISO) decoder as shown in Fig. 9.10. This is system
which, based on (9.6), accepts two sets of inputs: (a) then conditional probabil-
ities whose product formsp(y | x), and (b) thek a priori probabilitiesp(uj). It
outputs (c) thek APPsp(ui | y), and (d) thek extrinsic messages (the “extrinsic
information”). This block may be implemented using the BCJRalgorithm, or, if
this is computationally too intensive, an approximate version of it.
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(a) (b)

……
……

Figure 9.9:(a) Factor graph for the systematic codeC. (b) Messages exchanged by
the sum-product algorithm applied to the computation of theAPPsp(ui|y).

channel
observations

a priori
information

APPs

extrinsic
information

Figure 9.10:Soft-input, soft-output decoder for systematic codes.

SISO decoder: Nonsystematic codes

In this case, with the assumption of a stationary memorylesschannel, the APP
p(x|y) takes the form

p(x | y) ∝ [x ∈ C]

n∏

i=1

p(yi | xi)p(xi) (9.7)

This equation implies the assumption that the symbolsxi are all independent, so
thatp(x) can be factored as the product of individual probabilitiesp(xi). A priori,
this does not seem to make sense: however, we shall see in the following that in
turbo decoding algorithms the role of these probabilities will be taken by the ex-
trinsic messagese(xi). Since one of the effects of a long interleaver is to make the
random variablese(xi) independent (at least approximately), the above assump-
tion becomes realistic for long enough blocks. The corresponding factor graph is
shown in Fig. 9.11, while Fig. 9.12 illustrates the SISO decoder. This is a system
accepting two sets of inputs: (a) then conditional probabilitiesp(yj | xj), and (b)
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(a) (b)

……
……

Figure 9.11: (a) Factor graph for the nonsystematic codeC. (b) Messages ex-
changed by the sum-product algorithm applied to the computation of the APPs
p(xi|y).
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Figure 9.12:Soft-input, soft-output decoder for nonsystematic codes.

then a priori probabilitiesp(xj). It outputs (c) then APPsp(xi | y) and (d) then
extrinsic messagese(xi). (Notice that the a priori are unknown here.)

Turbo algorithm for parallel concatenation

Having defined SISO decoders, we can now specialize the general iteration scheme
of Fig. 9.8. If codesC1 andC2 are connected together, they may exchange extrinsic
information as suggested in Fig. 9.13. The complete scheme of Fig. 9.14 shows
how two SISO decoders combine into the turbo algorithm. The algorithms starts
by soft-decodingC1, which is done by the SISO decoderD1. At this step, the a
priori probabilities of each bit are initialized to1/2. The output APPs are not used,
while the extrinsic messages, suitably normalized to form probabilities, are used,
after permutation,as a priori probabilitiesin D2, the SISO decoder forC2. The
extrinsic messages at the output ofD2 are permuted, and used as a priori probabili-
ties forD1. These operations are repeated until a suitable stopping criterion is met.
At this point the output APPs are used to hard-decode the information bits. Notice
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…=

Figure 9.13:Exchange of extrinsic information between two codes.

π-1

π

πP/S P/S

channel
observation

channel
observation

extrinsic
information

extrinsic
information

a priori
information

a priori
information

APPAPP

Figure 9.14:General scheme of an iterative turbo decoder for parallel concatena-
tion. P/S denotes a parallel-to-series converter,D1 andD2 are soft-input, soft-
output decoders for codeC1 and codeC2, respectively,π denotes the same inter-
leaver used in the encoder, andπ−1 its inverse.

that in the iterations the channel information gathered from the observation ofyu,
y1, andy2 does not change: only the “a priori information” inputs to the decoders
vary.

By this algorithm, the operation of the individual SISO decoders is relatively
easy, becauseC1 andC2 are weak codes. As such, neitherC1 nor C2 can individu-
ally achieve a high performance. It is their combination that makes for a powerful
code, and at the same time allows the decoding task to be splitinto simpler opera-
tions.
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Figure 9.15:General scheme of an iterative turbo decoder for serial concatenation.
P/S denotes a parallel-to-series converter,Di and Do are soft-input, soft-output
decoders for inner codeCi and outer codeCo, respectively,π denotes the same
interleaver used in the encoder, andπ−1 its inverse.

Turbo algorithm for serial concatenation

We assume here that the inner code is systematic, while the outer code is nonsys-
tematic. Recalling Fig. 9.7, letu, v denote input and output ofCo, respectively,
w , πv the permuted version ofv, and (w, c) the output ofCi. Finally, let
y = (yw, yc) denote the observed vector. The block diagram of a turbo decoder
for serially-concatenated codes is shown in Fig. 9.15. The operation of this de-
coder is similar to that of Fig. 9.14; however, the two SISO decoders are differ-
ent here:Di has the structure illustrated in Fig. 9.10, whileDo corresponds to
Fig. 9.12.

9.2.2 Convergence properties of the turbo algorithm

Fig. 9.16 shows qualitatively a typical behavior of the bit error rate of an iteratively-
decoded turbo code. Three regions can be identified on this chart. In the low-SNR
region, the BER decreases very slowly as the iteration orderand the SNR increase.
For intermediate values of SNR, the BER decreases rapidly asthe SNR increases,
and improves with increasing the number of iterations. This“waterfall region” is
where turbo codes are most useful, as their coding gain approaches the theoretical
limit. Finally, for large SNR, an “error floor” effect takes place: the performance
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Figure 9.16:Qualitative aspect of the BER curves vs.Eb/N0 and the number of
iterations for turbo codes.

is dictated by the minimum Hamming distance of the code, the BER-curve slope
changes, and the coding gain decreases.1

Fig. 9.17 shows the performance of three turbo codes in the waterfall region.
Their error probabilities are compared with the Shannon limits for the uncon-
strained AWGN channel, as derived in Problem 8 of Section 3 (see also Fig. 1.5).

1It has been argued [9.15] that the presence of this error floormakes turbo codes not suitable
for applications requiring extremely low BERs. Their poor minimum distance, and their natural
lack of error-detection capability, due to the fact that in turbo decoding only information bits are
decoded (but see [9.26] for an automatic repeat-request scheme based on punctured turbo codes)
make these codes perform badly in terms of block error probability. Poor block error performance
also makes these codes not suitable for certain applications. Another relevant factor that may guide
in the choice of a coding scheme is the decoding delay one should allow: in fact, turbo codes, as well
as LDPC codes, suffer from a substantial decoding delay, andhence their application might be more
appropriate for data transmission than for real-time speech.



286 Chapter 9. LDPC and turbo codes

-2 -1.5 -1 -0.5 0 0.5 1
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

E
b
/N

0
 (dB)

P
(e

)

A B 
C 

ρ=1/4 ρ=1/3 

ρ=1/2 

Figure 9.17:Performance of three turbo codes with block length16,384, obtained
by parallel concatenation of two convolutional codes. CodeA hasρ = 1/4, 16+16
states, and is decoded with13 iterations. Code B hasρ = 1/3, 16 + 16 states, and
is decoded with11 iterations. Code C hasρ = 1/2, 2 + 32 states, and is decoded
with 18 iterations.

9.2.3 Distance properties of turbo codes

As just observed, for intermediate SNRs the good performance of turbo codes does
not depend on their minimum-distance properties: it is rather affected by their
small error coefficient (small number of nearest neighbors)in their low-weight
words. For high SNRs, on the other hand, the error probability curve of turbo
codes exhibits a “floor,” caused by a relatively modest minimum distance.2

Letn denote the block length of the component codes (and hence theinterleaver
length), andB the number of parallel codes (B = 2 in all preceding discussions,

2An error floor may also occur with LDPC codes, caused by “near-code words,” i.e.,n-tuples
with low Hamming weight whose syndrome has also a low weight.See [9.19].
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but we can think of a more general turbo coding scheme). Moreover, let the compo-
nent codes be recursive. Then, it can be shown [9.14] that theminimum Hamming
distance grows liken1−2/B . More precisely, given a codeC, let C(d) denote the
set of its nonzero words with weight1, . . . , d. If we choose at random a parallel
concatenated codeC usingB equal recursive convolutional codes and the block
length isn, then asn→ ∞ we have, for everyε > 0,

P

[∣∣∣C
(
n1−2/B−ε

)∣∣∣ = 0
]
→ 1 and P

[∣∣∣C
(
n1−2/B+ε

)∣∣∣ = 0
]
→ 0 (9.8)

Notice how this result implies that a turbo code with only twoparallel branches
has a minimum distance that does not grow as any power ofn, whereas if three
branches are allowed then the growth isn1/3.3

For serially concatenated codes the minimum-distance behavior is quite differ-
ent. Let us pick at random a code from an ensemble of serially concatenated turbo
codes. Moreover, letdo denote the free Hamming distance of the outer code. Then,
asn→ ∞ we have, for everyε > 0,

P

[∣∣∣C
(
n1−2/do−ε

)∣∣∣ = 0
]
→ 1 and P

[∣∣∣C
(
n1−2/do+ε

)∣∣∣ = 0
]
→ 0

(9.9)
We see that if the outer code has a largedo we can achieve a growth rate close to
linear withn.

9.2.4 EXIT charts

Since the turbo algorithm operates by exchanging extrinsicmessages between two
SISO decoders, its convergence may be studied by examining how these evolve
with iterations. A convenient graphical description of this process is provided by
EXIT charts [9.28], which yield quite accurate, albeit not exact, results, especially
in the waterfall region of the error-probability curve of turbo codes. An EXIT
chart is a graph that illustrates the input-output relationship of a SISO decoder
by showing the transformations induced on a single parameter associated with in-
put and output extrinsic probabilities. The upside of EXIT-chart analyses is that
only simulation of the behavior of the individual decoders is needed, instead of
computer-intensive error counting with the full decoding procedure.

Let us focus on the binary alphabetX = {±1}, and assume an AWGN channel,
so that the observed signal is

y = x+ z

3ForB = 2, an upper bound to the minimum distance of a turbo code forall possibleinterleavers
is derived in [9.5].
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with z ∼ N(0, σ2
z ). Since

p(y | x) =
1√

2πσz

e−(y−x)2/2σ2
z

the log-likelihood ratio(LLR)

Λ(y) , ln
p(y|x = +1)

p(y|x = −1)

takes value

Λ(y) =
2

σ2
z

(x+ z) (9.10)

and hence, givenx, Λ is conditionally Gaussian: we write

Λ(y) | x ∼ N

(
2

σ2
z

x,
4

σ2
z

)
(9.11)

In summary, we may say thatΛ(y) | x ∼ N(µ, σ2), and that it satisfies the “con-
sistency condition” [9.25]

µ = xσ2/2 (9.12)

The above allows us to write

p(Λ | x) =
1√
2πσ

e−(Λ−xσ2/2)2/2σ2

(9.13)

EXIT-chart techniques are based on the empirical evidence that extrinsic mes-
sages, when expressed in the form of log-likelihood ratios,approach a Gaussian
distribution satisfying the consistency condition (9.12). In addition, for large block
lengths (and hence large interleavers) the messages exchanged remain approxi-
mately uncorrelated from the respective channel observations over many itera-
tions [9.28]. Under the Gaussian assumption, the extrinsicmessages are charac-
terized by a single parameter, which is commonly and conveniently chosen to be
the mutual information exchanged between the LLR and the random variablex
(see [9.29] for experiments that justify this choice):

I(x; Λ) =
1

2

∑

x∈{±1}

∫
p(Λ|x) log

p(Λ|x)
p(Λ)

dΛ (9.14)

with p(Λ) = 0.5[p(Λ|x = −1) + p(Λ|x = +1)] under the assumption thatx
takes on equally likely values. In particular, ifΛ is conditionally Gaussian, and the
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Figure 9.18:Plot of the functionJ(σ2) defined in (9.15).

consistency condition (9.12) is satisfied, thenI(x; Λ) does not depend on the value
of x, and we have explicitlyI(x; Λ) = J(σ2), where

J(σ2) , 1 −
∫ ∞

−∞

1√
2πσ

e−[(w−xσ2/2)2/2σ2] log(1 + e−xz) dw

= 1 − E
[
log
(
1 − e−xΛ

)]
(9.15)

whereE is taken with respect to the pdfN
(
xσ2/2, σ2

)
. The functionJ(σ2) (plot-

ted in Fig. 9.18) is monotonically increasing, and takes values from0 (for σ → 0)
to 1 (for σ → ∞). If the assumption of conditional Gaussianity onΛ is not made,
a convenient approximation ofI(x; Λ), based on the observation ofN samples of
the random variableΛ, is based on (9.15):

I(x; Λ) ≈ 1 − 1

N

N∑

i=1

log (1 + exp(−xiΛi)) (9.16)

Recall now that we have four different messages at the input and output of a
SISO decoder: a priori, channel observation, soft-decision, and extrinsic. we de-
note these messages byµa, µo, µd, andµe, respectively, and byIa, Io, Id, andIe,
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encoder GRNG

GRNG

SISO
decoder

Figure 9.19:Computing the transfer functionT . GRNG is a Gaussian random
noise generator.

respectively, the mutual informations exchanged between their LLRs andx. We
describe the behavior of a SISO processor used in iterative decoding by giving its
extrinsic information transfer(EXIT) function

Ie = T (Ia, Io) (9.17)

Fig. 9.19 schematizes the Monte Carlo derivation of the EXITchart for a given
code. Choose first the values ofIa andIo. The random vectoru of uncoded±1
symbols is encoded to generate the vectorx. A Gaussian random noise generator
outputs, for each componentx of x, the LLRΛo such that

Λo|x ∼ N

(
x
σ2

o

2
, σ2

o

)

whereσ2
o = J−1(Io). Similarly, another Gaussian random noise generator outputs,

for each componentu of u, the LLRΛa such that

Λa|u ∼ N

(
u
σ2

a

2
, σ2

a

)

whereσ2
a = J−1(Ia). These two LLRs correspond to messages entering the SISO

decoder. This outputs the LLRsΛd andΛe. Only the latter is retained, andN val-
ues of it are used to approximateIe through (9.16), so that no Gaussian assumption
is imposed onΛe.

Once the transfer functions of both decoders have been obtained, they are drawn
on a single chart. Since the output of a decoder is the input ofthe other one, the
second transfer functions is drawn after swapping the axes,as shown in the exam-
ple of Fig. 9.20 (here the two decoders are equal). The behavior of the iterative
decoding algorithm is described by a trajectory, i.e., a sequence of moves, along
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Figure 9.20: EXIT chart for a rate-1/2 convolutional code and two values of
Eb/N0.

horizontal and vertical steps, through the pair of transferfunctions. Iterations start
with no a priori knowledge, so thatIa = 0. Due to the channel observations, the
corresponding value ofIe at the output of the first SISO decoder increases with
Eb/N0. The resulting extrinsic message if fed to the second decoder, which cor-
responds to moving along a horizontal line joining the two transfer functions. We
thus obtain the value ofIe at the output of the second decoder. The correspond-
ing message is fed back to the first decoder, whose output yields the value ofIe

obtained by joining the two curves with a vertical line, and so on.
Fig. 9.20 shows two examples of convergence behavior. ForEb/N0 = 0.65 dB,

the two curves intersect, the trajectory is blocked, and we experience no conver-
gence to large values of mutual information (which correspond to small error prob-
abilities). ForEb/N0 = 1 dB, instead, we have convergence.

Estimates of the error probability of a coded system can be superimposed to
EXIT charts to offer some extra insight in the performance ofthe iterative decoder.
If the LLR Λd is assumed to be conditionally Gaussian, with meanµd = xσ2

d/2
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and varianceσ2
d, the bit error rate (BER) can be approximated in the form

Pb(e) = P(Λd > 0 | x = −1) ≈ Q

( |µd|
σd

)
= Q

(σd

2

)
(9.18)

SinceΛd = Λo + Λa + Λe, the assumption of independent LLR’s leads to

σ2
d = σ2

o + σ2
a + σ2

e ,

which in turn yields

Pb(e) ≈ Q

(√
J−1(Io) + J−1(Ia) + J−1(Ie)

2

)
(9.19)

Notice that, due to (9.11), we have

σ2
o =

4

σ2
z

= 4 SNR= 8ρ
Eb

N0

whereρ is the rate of the concatenated code. Fig. 9.21 superimposesthe EXIT
chart corresponding toEb/N0 = 1 dB to a set of constant-BER curves. Compar-
ison of this Figure with Fig. 9.22, obtained by Monte Carlo simulation, shows a
good match between the “true” BERs and those predicted by EXIT charts. In ad-
dition, observing the evolution of the constant-BER curves, one can observe how
traversing the “bottleneck” region between the two curves corresponds to a slow
convergence of the BER. Once the bottleneck is passed, faster convergence of BER
is achieved.

Accuracy of EXIT-chart convergence analysis

In the upper portion of the EXIT chart, extrinsic messages become increasingly
correlated, and the true evolution ofIe deviates from the behavior predicted by the
chart. As correlations depend also on the interleaver size,it is expected that EXIT
analyses become more accurate as it increases.

9.3 Bibliographical notes

Low-density parity-check codes were introduced by Gallager in his doctoral the-
sis [9.12], and rediscovered in the mid-90s [9.18]. Ref. [9.21] reviews techniques
for constructing LDPC codes whose graph have large girth. LDPC decoding al-
gorithms are analyzed in [9.12, 9.18]. LDPC codes over nonbinary alphabets are
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Figure 9.21: EXIT chart as in Fig. 9.20, forEb/N0 = 1 dB, superimposed to
constant-BER curves.

examined in [9.8]. Turbo codes, and their iterative decoding algorithm, were first
presented to the scientific community in [9.4]. The iterative (“turbo”) decoding
algorithm was shown in [9.17] to be an instance of J. Pearl’s “belief propagation”
in graphs [9.22]. Our presentation of SISO decoders follows[9.23].

The capacity-approaching codes described in this chapter are now finding their
way into a number of practical applications, ranging from UMTS to wireless local-
area networks, deep-space communication, and digital video broadcasting. A list
of practical implementations of LDPC codes can be found in [9.24].

Richardson and Urbanke [9.6] have introduced the study of the evolution of the
probability distribution of the exchanged messages as a tool to study the conver-
gence behavior of turbo algorithms. EXIT charts, which characterize these distri-
butions using a single parameter, were advocated in [9.28].Application of EXIT
charts to LDPC codes, a topic not considered here, is described in [9.2].

Computation of bounds to the error probability of turbo codes can be found
in [9.9,9.27].
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Figure 9.22:Convergence of a turbo code based on two equal convolutionalcodes
as in Fig. 9.20 (simulation results).

9.4 Problems

1. Once the matrixH of an LDPC code is selected, show how the generator
matrixG can be obtained. Consider separately the cases ofH having or not
having full rank. IsG a sparse matrix?

2. Derive EXIT charts for some simple convolutional codes assumingIa = 0.
Interpret the shape of the functions.

3. Extend the EXIT-chart analysis to the frequency-flat, slow independent Rayleigh
fading channel.

References

[9.1] B. Ammar, B. Honary, Y. Kou, J. Xu, and S. Lin, “Construction of low-density
parity-check codes based on balanced incomplete block designs,” IEEE Trans. In-
form. Theory, Vol. 50, No. 6, pp. 1257–1268, June 2004.



References 295

[9.2] M. Ardakani and F. R. Kschischang, “Designing irregular LPDC codes using EXIT
charts based on message error rate,”Proc. 2002 IEEE Int. Symp. Inform. Theory,
Lausanne, Switzerland, p. 454, June 30–July 5, 2002.

[9.3] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:
Turbo codes,”IEEE Trans. Commun., Vol. 44, No. 10, pp. 1261–1271, October
1996.

[9.4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding: Turbo codes,”Proc. IEEE 1993 Int. Conf. Commun. (ICC93),
Geneva, Switzerland, pp. 1064–1070, May 1993.

[9.5] M. Breiling, J. B. Huber, “Combinatorial analysis of the minimum distance of turbo
codes,”IEEE Trans. Inform. Theory, Vol. 47, No. 7, pp. 2737–2750, Nov. 2001.

[9.6] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product de-
coding of low-density parity-check codes using a Gaussian approximation,”IEEE
Trans. Inform. Theory, Vol. 47, No. 2, pp. 657–670, Feb. 2001.

[9.7] M. C. Davey,Error-correction using Low-Density Parity-Check Codes. PhD Dis-
sertation, Univ. of Cambridge, Dec. 1999.

[9.8] M. C. Davey and D. J. C. MacKay, “Low density parity chack codes over GF(q),”
IEEE Comm. Lett., Vol. 2, No. 6, pp. 165–167, June 1998.

[9.9] D. Divsalar and E. Biglieri, “Upper bounds to error probabilities of coded systems
beyond the cutoff rate,”IEEE Trans. Commun., Vol. 51, No. 12, pp. 2011–2018,
Dec. 2003.

[9.10] J. L. Fan, “Array codes as low-density parity-check codes,”Proc. 2nd Int. Symp. on
Turbo Codes & Related Topics, Brest, France, pp. 543–546, Sept. 4–7, 2000.

[9.11] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant
permutation matrices,”IEEE Trans. Inform. Theory, Vol. 50, No. 8, pp. 1788–1793,
Aug. 2004.

[9.12] R. G. Gallager,Low-density Parity-Check Codes.Cambridge, MA: MIT Press,
1963.

[9.13] B. Honaryet al., “On construction of low density parity check codes,”2nd Int.
Workshop on Signal Processing for Wireless Communications(SPWC 2004), Lon-
don, U.K., June 2–4, 2004.

[9.14] N. Kahale and R. Urbanke, “On the minimum distance of parallel and serially con-
catenated codes,”Proc. IEEE ISIT 1998, Cambridge, MA, p. 31, Aug. 16–21, 1998.

[9.15] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes based on
finite geometries: A rediscovery and new results,”IEEE Trans. Inform. Theory,
Vol. 47, No. 7, pp. 2711–2736, November 2001.



296 References

[9.16] R. Lucas, M. P. C. Fossorier, Y. Kou, and S. Lin, “Iterative decoding of one-step
majority logic decodable codes based on belief propagation,” IEEE Trans. Com-
mun., Vol. 48, No. 6, pp. 931–937, June 2000.

[9.17] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as an instance
of Pearl’s “belief propagation” algorithm,”IEEE Journal Select. Areas Commun.,
Vol. 16, No. 2, pp. 140–152, February 1998.

[9.18] D. J. C. MacKay, “Good error correcting codes based onvery sparse matrices,”
IEEE Trans. Inform. Theory, Vol. 45, No. 2, pp. 399–431, March 1999. (See also
Errata,ibidem, Vol. 47, No. 5, p. 2101, July 2001.)

[9.19] D. J. C. MacKay and M. S. Postol, “Weaknesses of Margulis and Ramanujan-
Margulis low-density parity-check codes,”Electronic Notes in Theoretical Com-
puter Science, Vol. 74, pp. 1–8, 2003.

[9.20] N. Miladinovic and M. Fossorier, “Systematic recursive construction of LDPC
codes,”IEEE Commun. Letters, Vol. 8, No. 5, pp. 302–304, May 2004.

[9.21] J. M. F. Moura, J. Lu, and H. Zhang, “Structured low-density parity-check codes,”
IEEE Signal Processing Magazine, Vol. 21, No. 1, pp. 42–55, Jan. 2004.

[9.22] J. Pearl,Probabilistic Reasoning in Intelligent Systems: Networksof Plausible In-
ference.San Francisco, CA: Morgan Kaufmann, 1988.

[9.23] O. Pothier,Codes Composites Construitsà Partir de Graphes et Leur D́ecodage
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