you did your strong nine furlong mile in slick and slapstieicord time

LDPC and turbo codes

Classes of codes defined on graphs exist that can approacimd®ts ca-
pacity bound quite closely, and with a reasonable decodimgptexity. All
these codes are obtained by connecting simple componees ¢babugh an
interleaver. Decoding consists of iterative decodingshesé simple codes.
In this chapter we describe in some detail turbo codes andiEnsity parity
check codes, with special attention to their performanaéthair decoding
algorithms. Their distance properties are also given sdteatéion.

269

270 Chapter 9. LDPC and turbo codes

9.1 Low-density parity-check codes

A low-density parity-check (LDPC) code is a long linear Ha@ode whose parity-
check matrixH has a low density of ones. Specificall{,is sparse, i.e., contains a
small fixed numbetv. of ones in each column and a small fixed numibgof ones
in each row. If the block length is, we say that characterizes atw, w., w,)
LDPC code. These codes may be referred teegslar LDPC codes to distinguish
them fromirregular codes, whose values of. andw,. are not constant. The matrix
H of the latter hagpproximatelyw,. ones in each row and,. ones in each column.

The normal graph of a (regular) LDPC code is shown in Fig. QMith this
representation, we have that an LDPC code is a binary liresde such that every
coded symbol participates in exactly. parity-check equations, while each one
of the m sum-check equations involves exacily bits. For consistency, we have
NWe = MWy.

Figure 9.1:Normal graph of a reguldmn, w., w,) LDPC code.

It follows from the definition of an LDPC code th# hasnw./w, rows: in
fact, the total number of ones H is nw,; dividing by w,., we obtain the number
of rows. SinceH is in general amn x n matrix, if H has full rank the code rate is

Mmooy Y (9.1)

n n Wy
The above equality yields the constraint < w,. Notice that the actual rajeof
the code might be higher than/n = w./w,, because the parity-check equations
summarized byH might not be all independent. We calf = 1 — w./w, the
design rateof the code.

9.1. Low-density parity-check codes 271

Example 9.1
The parity-check matrix of &0, 3,4) LDPC code withp* = 1/4 is shown below.
(11110 000 00O0O0OOOOO0O0O0O0]
060000111 100O0O0O0O0O0O0OO0GO0GO0O0
0 000OO0OO0OOOOT1T111O0O0O0O0OO0OTO0TO0O0
0o 000O0OO0OO0OO0OO0OO0OO0ODO0OT1T1TT1TT1QO0O0O0O0
0o 000O0OO0OOO0OOOOOOSO0OOOO0OSOODOT1ITT1T11
100010O0O0OD1O0O0OO0OT1O0O0OO0OTO®O0OTU 0O
0601 00010O0O0OT1O0O0O0OO0OOOT11O0TO 0O
H=|{00100O0O1O0O0OO0OO0OOOOT1O0O0OO0OT1QO0DO0
0 00100O0O0OO0OO0O1O0O0O0O0O1UO0O0OO0OT1IO0
0o 0000O0OO0O1O0O0O0OT1O0O0OO0T1UO0TO0TGO0O1
100001O0O0OO0OOO1O0O0OOOOT1TUO0OO@O0
0601 000O0O10O0OO0OT1QO0TO0O0OOT1O0O0TO 0O
001 0O0O0O01O0O0O0ODO0O01O0O0O0OO0OTUO0DTI1ITO®O0
0 00100O0O0O1O0O0ODO0OSOO1O0O0OT11O0®O0T® 0
;)0 000100O0O01O0O0O0O0T1O0O0O0O0 1]

In this example we observe thEE can be viewed as composed of three subma-
trices, each of which contains a singl&’‘in each column. The second and third
submatrices are obtained from the first one by permutingahexmn order. d

9.1.1 Desirable properties

While the ultimate quality of an LDPC code is defined in termdét®rate, cod-
ing gain, and complexity, some simple considerations magegine selection of a
candidate code. First, for good convergence propertidseaterative decoding al-
gorithm, the Tanner graph of the code should have a large. dirparticular, short
cycles must be avoided. (Observe that the shortest possjble in a bipartite
graph has lengti, as shown in Fig. 9.2 along with the structure of the parity-
check matrix that generates it.) Next, regularity of theecedses implementation.
Finally, for small error probability at high; /Ny on the AWGN channel, the min-
imum Hamming distance of the code must be large. This is édpemteresting,
because LDPC codes are known to achieve a large valig of,. Roughly speak-
ing, if w. > 2 this grows linearly with the block length, and hence a large random
LDPC code will exhibit a largels, min With high probability. More specifically, it
has been proved [9.12,9.18] that, for a large enough blowitte:,, an LDPC code
exists with ratep > 1 — 1/, and minimum distancé i, > on, for anys < 0.5

272 Chapter 9. LDPC and turbo codes

U J
s [.]

1 1|7
T 1 1 |s

Figure 9.2:Four-cycle in a Tanner graph, and corresponding paritgicheatrix.

that satisfies the inequality

—dlogd — (1 —0)log(l —9) <1/A

9.1.2 Constructing LDPC codes

Several techniques for the design of parity-check matriddsDPC codes have
been proposed and analyzed. They can be classified underamaatrics:ran-
domandalgebraicconstructions. Here we provide an example of each.

Random constructions

These are based on the generation of a parity-check matrdoraly filled with
0s andls, and such that the LDPC properties are satisfied. In pkatjcfter one
selects the parametetsp*, andw, for regular codes the row and column weights
of H must be exactlyw, andw,, respectively, withw, andw. small compared
to the number of columns and rows. Additional constrainty lm&included: for
example, the number dfs in common between any two columns (or two rows)
should not exceed one (this constraint prevents four-sycle

In general, randomly constructed codes are goodi#f large enough, but their
performance may not be satisfactory for intermediate watdie [9.11,9.16]. Also,
usually they are not structured enough to allow simple eingpd

A method for the random constructionHfwas developed by Gallager in [9.12].
The transpose of the matrF of a regular(n, w., w,) has the form

H =[H| H) ---H,, | (9.2)

whereH; hasn columns and:/w, rows, contains a singlein each column, and
its sth row containsls in columns(i — 1)w, + 1 to iw,. MatricesH, to H,,, are

9.1. Low-density parity-check codes 273

obtained by randomly permuting (with equal probabilitige columns oH;. The
matrix H of Example 9.1 is generated in this way, although there tihepetions
are not random.

Another algorithm for the generation of the parity-checknmaf an (n, w., w,)
LDPC code works as follows:

Step 1. Sety = 1.

Step 2. Generate a random binary vector with length. /w, and weightw,. This
is theith column ofH.

Step 3. If the weight of each row oH at this point is< w,., and the scalar product
of each pair of columns it 1 (four-cycle constraint), then set= ¢ + 1.
Otherwise, go to Step 2.

Step 4. If i = n, then stop. Otherwise, go to Step 2.

Since there is no guarantee that there are exaethyis in each row ofH, this
algorithm may generate an irregular code. If a regular cedsought, suitable
modifications to the procedure should be made.

Algebraic constructions

Algebraic LDPC codes may lend themselves to easier dectlaiimyandom codes.
In addition, for intermediate, the error probability of well-designed codes alge-
braic codes may be lower [9.1,9.20].

A simple algebraic construction works as follows [9.10,39.1Choosep >
(we — 1)(w, — 1), and consider thg x p matrix obtained from the identity matrix
I, by cyclically shifting its rows by one position to the right:

0100 0
0010 0
J2|10 001 0
0000 --- 1
1000 ---0

The ¢th power ofJ is obtained froml, by shifting cyclically its rows by mod p
positions to the right. After defining® £ I,,, construct the matrix

JO JO JO . JO
JO Jl J2 L. Jwrfl
H = Jo 32 J4 L JZ(wT—l)

JO J(wc—l) J2(wc_1) e J(wc_l)(wr—l)

274 Chapter 9. LDPC and turbo codes

This matrix hasw.p rows andw,p columns. The number dfs in each row and
column is exactlyw, andw,, respectively. Hence, this construction generates a
{(w,p, we, w,) LDPC code. It can be proved that decycles are present.

Combining random and algebraic constructions

A technique that combines random and algebraic construisiproposed in [9.20].
Start with them x n parity-check matri¥(0) of a good “core” LDPC code. Next,
substitute for eachh in H(0) ap; x p; permutation matrix chosen randomly. We
obtain the newnp; x np; parity-check matrixH(1). Since the probability of
repeating the same permutation matrix in the constructicH@) is 1/p;!, itis
suggested to chooge > 5. The construction is repeated by substituting for each
1in H(1) aps x p2 random permutation matrix, which yields thep;ps x npips
parity-check matrixt (2). This procedure can be repeated. In [9.20], it is shown
that this construction preserves the girth and the minimwmhiing distance of
the core code.

9.1.3 Decoding an LDPC code

Decoding can be performed using the sum-product or the maxagorithm as
indicated in previous chapter. Here, however, since thadiagraph of the code
has cycles, the algorithm is not exact, nor does it convargefinite number of
steps. An iterative algorithm can be devised, which congpaiéernatively the
messages associated with both directions of each brandhstaps according to
a preassigned criterion. A possible stopping rule is thioviohg: seti; = 1

if p(z; = 1] y) > plxz; = 0 | y), andz; = 0 otherwise. If the vector
X 2 (#1,...,2,) is a code word (i.e., all parity checks are satisfied) thep.sto
Otherwise, keep on iterating to some maximum number oftiters, then stop and
declare a failure.

Fig. 9.3 represents, in a schematic form, the two basic rgegsassing steps
when an iterative version of the sum-product algorithm iedufor decoding an
LDPC code. We assume here that the messages are normaliasdaeepresent
probabilities, and use a result from Problem 4 of Chapter 8e dlgorithm starts
with the intrinsic probabilities; £ p(y;|x;), and with uniform messages coming
out of check nodesz, = (0.5, 0.5) for all £. Application of the SPA first computes
the messages passing from symbol nodes to check nodestdhenteck nodes to
symbol (repetition) nodes. These two steps represent kestegation of the SPA.

Fig. 9.4 shows the performance of two LDPC codes.

9.1. Low-density parity-check codes 275

r

‘X'i_l— =‘i—i—ill/1—2 \
v; gl:JéM (1= pr,p1) p1 5 T35 _}:12(Pe)
e IE—
V; M2 (1 _P2u")2>
[} (=1 @2 [EF—®
Ur
:@ r s Eli
(]- _p87ps)

Figure 9.3: Decoding an LDPC code: message-passing from a symbol naale to
check node, and vice versa.

A simple suboptimum decoding algorithm: bit flipping

An LDPC code can be suboptimally decoded by a simple itera¢ighnique, called
the bit-flipping algorithm First, the symbols are individually “hard-decoded” by
transforming the channel observations intand0s, so that the received vector
y is transformed into the binary vectdr. Consider the syndromEb’, whose
components can be seen as the results of the sums computesl right part of
the graph. Each componentlefaffectsw. components of the syndrome. Thus, if
only one bitis in error, themw,. syndrome components will equial The bit-flipping
algorithm is based on this observation, and works as folldaeach iteration step
includes the computation of all check sums, and the compuatatf the number
of unsatisfied parity checks involving each one of thbits of b. Next, the bits
of b are flipped when they are involved in the largest number ohtisfied parity
checks. Steps are repeated until all checks are satisfiedtenra predetermined
number of iterations.

Example 9.2

For illustration purposes, consider the ras code (not exactly an LDPC code, as
n is not large enough to yield a spad@ with parity-check matrix

111000
1001 10
HiOlOlOl
0 01 011

corresponding to the Tanner graph of Fig. 9.5. Let the olesbvector bé.1, .3, —1.2,.02, .5, .9).
The binary6-tuple obtained by hard-decoding(i301000). This is not a code word.

276 Chapter 9. LDPC and turbo codes

Pe)

10

|
-2 15 -1 -0.5 0 0.5 1
E,/N, (dB)

Figure 9.4:Performance of raté/4 codes. Code B [9.7]is an irregular LDPC code
with n = 16,000. Code C [9.18] is a regular LDPC code with= 40,000. For
reference’s sake, Code A is a turbo code wiith 16,384 (see Fig. 9.17 for further
details). The leftmost curve is the Shannon limit fo= 1/4 and unconstrained
AWGN channel, as derived in Problem 8 of Section 3 (see algolF5).

The first iteration shows that the parity checks that faillaend4, which is inter-
preted as an error located among the symbols whose nodesrareated to adders
1 and4. Now, symbol4 corresponds to no failed check, symbo|s2, 5, and6
correspond td failed check, and symbd@lto 2 failed checks. We flip the third bit,
thus obtaining the code wor@00000), which is accepted, as all parity checks are
satisfied. O

9.2. Turbo codes 277

Figure 9.5:Tanner graph of an LDPC code.

9.2 Turbo codes

The general scheme of a turbo code based on “parallel coratair” of two con-
volutional codes was shown in Fig. 8.14. Thelg,andC, are binary terminated
convolutional codes or block codes, realized in systenfatin. Let the generator
matrices of¢; andC, beG; = [I P;]andGs = [I Py, respectively. If the
vector to be encoded is, the first encoder outpufst c;], with c; = uP;. The
interleavers applies a fixed permutation to the components,cdnd sendsru to
the second encoder, which generdtea c;|, with co = (wu)Ps.

If ; and@, have rateg; andp-, respectively, the turbo-code rate is given by

p=—"12 9.3)
pP1+ p2 — p1p2
To prove this, neglect the effect of the trellis terminatiand observe that ¥ bits
enter the encoder of Fig. 8.14, thartontainsk bits, ¢; containsk/p; — k bits, and
cy containsk/p, — k bits. The ratio betweeh and the total number of encoded
bits yields (9.3). Note that jf; = p2 we simply have

p=5 (9.4)
—pP1

The most popular turbo-code design higs= py = 1/2 (typically obtained with
C1 = C9), and hence = 1/3 [9.3,9.4]. If the even bits of; and the odd bits of
cy are punctured, them = p2 = 2/3, andp = 1/2.

278 Chapter 9. LDPC and turbo codes

u

C1

C2

Figure 9.6: Encoder of a parallel-concatenated turbo code with reeeisdmpo-
nent encoders, angd=1/3.

u | c. v W e, ﬂv»,c)

A\ 4
|
A

Figure 9.7:General scheme of a serially-concatenated turbo code.

The most common form of convolutional encoder used in geigrensystem-
atic and polynomial (as for example the rate& encoder of Fig. 6.3). Such an
encoder cannot be used as a constituent of a turbo code, wdycires system-
atic encoders. Nonrecursive (i.e., feedback-free) ensalould also be ruled out,
because the resulting turbo code would exhibit poor digtgroperties. A turbo
encoder including two systematic recursive codes is shaviig. 9.6.

Serially-concatenated turbo codes

A serially-concatenated turbo code is obtained by casgadin convolutional en-
coders as shown in Fig. 9.1, is called theouter code, and®; the inner code.
Their rates are, andp;, respectively. In practice, the outer code may be chosen
as nonrecursive and nonsystematic or recursive and systeimavever,C; should

be recursive and systematic for better performance. Tleemaftthe concatenated
code is simply given by the product of the two rates:

P = Popi (9.5)

9.2. Turbo codes 279

For example, the rate = 1/2 can be obtained by choosing two component code
po = 2/3 andp; = 3/4. Notice that this choice involves constituent codes with
higher rates and complexity than for a raté turbo code with parallel concatena-
tion.

9.2.1 Turbo algorithm

Although, in principle, turbo codes can be optimally deabdy drawing their
trellis and using Viterbi algorithm, the complexity of thesulting decoder would
be generally prohibitive. Using an iterative version of fugn-product algorithm
(the “turbo algorithm”) provides instead extremely goodfpemance with mod-
erate complexity. This algorithm is conceptually similarthe message-passing
algorithm described for LDPC codes, consisting in itemtidxchanges of mes-
sages from symbol nodes to check nodes and vice versa (se& FigWith turbo
codes, the more complex structure of their factor graph ¢wimicludes convolu-
tional codes in lieu of symbol nodes and check nodes: seeg8Fi§) calls for a
more complex algorithm. In fact, it requires the separatdimg of the compo-
nent codes: each decoder operates on the received data, dorestimate of the
transmitted message, and exchanges information with trer diecoder. After a
number of iterations, this estimate is finally accepted. algerithm is run for a
fixed number of iterations, or can be stopped it as soon asewodl is obtained
(seesupra Section 9.1.3).

Fig. 9.8 summarizes the general principle, whereby two dexso(one forC;

channel

observation 1 u

D,

@2 channel

u Y2 observation

Figure 9.8: General scheme of turbo decoding algorithm. Hereandys are
channel observations generated by two independent ergodirthe same block
u.

and one forG,) exchange messages back and forth: this decoding mech&nism

280 Chapter 9. LDPC and turbo codes

reminiscent of the working of a turbo-charged engine, wisghgested the name
“turbo” for the algorithm. Although relatively little is kmwn about its theoreti-
cal convergence properties (which will be examinefila, in Section 9.2.4), its
behavior with graphs having loops is surprisingly good.

To describe the turbo algorithm, we first examine the behmasidghe two de-
coders of Fig. 9.8, and, in particular, the messages theyagige under the SPA.
Consider a linear binary block codewith lengthn and k information symbols
(if a convolutional code is used, let its termination getee@block code with the
above parameters). Here we compute explicitly the a posigriobabilities of the
code symbols, examining separately systematic and a nensgtc codes.

SISO decoder: Systematic codes

If the code is systematic, the firktentries of each word coincide with the infor-
mation symbolair. We writex = (uy, ..., uk, Tkt1, - .., Tn), and we have

p(x) =[x € € H p(us)

Hence, under our usual assumption of a stationary memearglennel,

k n
p(x|y) < [x €€ [[p(yi [uwi)pw) [] »y;l ;) (9.6)
i=1 j=kt1

To compute the APPs of the information symbajsi = 1, ..., k, (and hence to
soft-decode®) we combine, according to (9.6), the “a priori informatigis;), . . . , p(ux)
on the source symbols and the “channel informatip(y’ | x) into one intrinsic
message (Fig. 9.9).

To describe the message-passing turbo algorithm it is cdentto introduce
a soft-input, soft-outpufSISO) decoder as shown in Fig. 9.10. This is system
which, based on (9.6), accepts two sets of inputs: (ahthenditional probabil-
ities whose product forms(y | x), and (b) thek a priori probabilitiesp(u;). It
outputs (c) thet APPsp(u; | y), and (d) thek extrinsic messages (the “extrinsic
information”). This block may be implemented using the BGil&orithm, or, if
this is computationally too intensive, an approximate ioersf it.

9.2. Turbo codes

281

£

[x € C]

(@)

(b)

Figure 9.9:(a) Factor graph for the systematic cdtigb) Messages exchanged by
the sum-product algorithm applied to the computation ofAREsp(u;|y).

channel
observations

V2R
PAY | &) —

plug), 1<i<k

a priori
information

extrinsic
information

Figure 9.10:Soft-input, soft-output decoder for systematic codes.

SISO decoder: Nonsystematic codes

In this case, with the assumption of a stationary memorytéssinel, the APP

p(x]y) takes the form

n

p(x|y) o [x € €] [[pwi | wi)p(a:) 9.7)

i=1

This equation implies the assumption that the symbglare all independent, so
thatp(x) can be factored as the product of individual probabiliies;). A priori,

this does not seem to make sense: however, we shall see ialltheirig that in
turbo decoding algorithms the role of these probabilitiél lve taken by the ex-
trinsic messages(z;). Since one of the effects of a long interleaver is to make the
random variableg(z;) independent (at least approximately), the above assump-
tion becomes realistic for long enough blocks. The corredjmy factor graph is
shown in Fig. 9.11, while Fig. 9.12 illustrates the SISO dkxo This is a system
accepting two sets of inputs: (a) theconditional probabilities(y; | z;), and (b)

282 Chapter 9. LDPC and turbo codes

Z;
. T . ekxzﬂ l p(yzimz)p(wz)
e €] e €]
(@) (b)

Figure 9.11: (a) Factor graph for the nonsystematic cdile (b) Messages ex-
changed by the sum-product algorithm applied to the contpataf the APPs

p(wily).

channel
observations APPs
p(y | x) — plzi|y), 1<i<n

p(x;), 1<i<n e(r;), 1<i<n

a priori extrinsic
information information

Figure 9.12:Soft-input, soft-output decoder for nonsystematic codes.

then a priori probabilitiesp(x ;). It outputs (c) ther APPsp(z; | y) and (d) then
extrinsic messages ;). (Notice that the a priori are unknown here.)

Turbo algorithm for parallel concatenation

Having defined SISO decoders, we can now specialize the géteation scheme
of Fig. 9.8. If code<?; and(, are connected together, they may exchange extrinsic
information as suggested in Fig. 9.13. The complete schdrreg09.14 shows
how two SISO decoders combine into the turbo algorithm. Tgerdthms starts
by soft-decoding®;, which is done by the SISO decod®y. At this step, the a
priori probabilities of each bit are initialized 19'2. The output APPs are not used,
while the extrinsic messages, suitably normalized to forababilities, are used,
after permutationas a priori probabilitiesin D, the SISO decoder fdg,. The
extrinsic messages at the outputldf are permuted, and used as a priori probabili-
ties forD,. These operations are repeated until a suitable stoppitegion is met.

At this point the output APPs are used to hard-decode thenrd#tion bits. Notice

9.2. Turbo codes 283

EX
m
©

VA Yo

channel APP channel APP
observation observation
a priori D extrinsic a priori D extrinsic
information 1 | information o information 2 | information
UL
1
LS

Figure 9.14:General scheme of an iterative turbo decoder for paralletatena-
tion. P/S denotes a parallel-to-series conveffer,and D, are soft-input, soft-
output decoders for cod®, and code,, respectivelys denotes the same inter-
leaver used in the encoder, and" its inverse.

that in the iterations the channel information gatherechftbe observation aof,,
y1, andy, does not change: only the “a priori information” inputs te ttecoders
vary.

By this algorithm, the operation of the individual SISO deers is relatively
easy, becaus@, andC, are weak codes. As such, neitltgrnor G, can individu-
ally achieve a high performance. It is their combinatiort thakes for a powerful
code, and at the same time allows the decoding task to bergplisimpler opera-
tions.

284 Chapter 9. LDPC and turbo codes

Y
— | PIS
Yo
channel APP channel APP
observation observation
a priori @ . extrinsic a priori D extrinsic
information 1 information ,_1| information o information
.
[|
LT

Figure 9.15:General scheme of an iterative turbo decoder for serialatenation.
P/S denotes a parallel-to-series converier,andD, are soft-input, soft-output
decoders for inner cod@; and outer cod&,, respectively,m denotes the same
interleaver used in the encoder, arid its inverse.

Turbo algorithm for serial concatenation

We assume here that the inner code is systematic, while tiee¢ cade is nonsys-
tematic. Recalling Fig. 9.7, lat, v denote input and output @,, respectively,
w 2 mv the permuted version of, and (w, c) the output ofC;. Finally, let
y = (Yw, ¥.) denote the observed vector. The block diagram of a turbod#co
for serially-concatenated codes is shown in Fig. 9.15. Teration of this de-
coder is similar to that of Fig. 9.14; however, the two SISQ@aikers are differ-
ent here:D; has the structure illustrated in Fig. 9.10, whilg, corresponds to
Fig. 9.12.

9.2.2 Convergence properties of the turbo algorithm

Fig. 9.16 shows qualitatively a typical behavior of the bbiberate of an iteratively-
decoded turbo code. Three regions can be identified on this.cin the low-SNR
region, the BER decreases very slowly as the iteration @xéthe SNR increase.
For intermediate values of SNR, the BER decreases rapidlyeaSNR increases,
and improves with increasing the number of iterations. Thigterfall region” is
where turbo codes are most useful, as their coding gain appes the theoretical
limit. Finally, for large SNR, an “error floor” effect takedque: the performance

9.2. Turbo codes 285

LOW SNR

WATERFALL

BER

iteration
order

ERROR FLOOR

E/N, (dB)

Figure 9.16: Qualitative aspect of the BER curves ¥s,/N, and the number of
iterations for turbo codes.

is dictated by the minimum Hamming distance of the code, tBR&urve slope
changes, and the coding gain decredses.

Fig. 9.17 shows the performance of three turbo codes in therfall region.
Their error probabilities are compared with the Shannoritdirfor the uncon-
strained AWGN channel, as derived in Problem 8 of Sectiore8 édso Fig. 1.5).

It has been argued [9.15] that the presence of this error ftaakes turbo codes not suitable
for applications requiring extremely low BERs. Their poomimum distance, and their natural
lack of error-detection capability, due to the fact thatunbb decoding only information bits are
decoded (but see [9.26] for an automatic repeat-requesheeibased on punctured turbo codes)
make these codes perform badly in terms of block error piiiyalPoor block error performance
also makes these codes not suitable for certain applicatiinother relevant factor that may guide
in the choice of a coding scheme is the decoding delay onddshfiow: in fact, turbo codes, as well
as LDPC codes, suffer from a substantial decoding delayhande their application might be more
appropriate for data transmission than for real-time dpeec

286 Chapter 9. LDPC and turbo codes

10 >
A B
c
p=1/2"|
O
& a
t p=1/3
10°¢ g
10-6 | | | |
-2 -1.5 -1 -0.5 0 0.5 1
E,/N, (dB)

Figure 9.17:Performance of three turbo codes with block lengit884, obtained
by parallel concatenation of two convolutional codes. Cadlasp = 1/4, 16+ 16
states, and is decoded with iterations. Code B hgs= 1/3, 16 + 16 states, and
is decoded with 1 iterations. Code C hgs= 1/2, 2 + 32 states, and is decoded
with 18 iterations.

9.2.3 Distance properties of turbo codes

As just observed, for intermediate SNRs the good performafturbo codes does
not depend on their minimum-distance properties: it iseathffected by their
small error coefficient (small number of nearest neighbarstheir low-weight
words. For high SNRs, on the other hand, the error probghilirve of turbo
codes exhibits a “floor,” caused by a relatively modest mimimrdistance.

Letn denote the block length of the component codes (and hendeténkeaver
length), andB the number of parallel code®3(= 2 in all preceding discussions,

2An error floor may also occur with LDPC codes, caused by “memle words,” i.e.pn-tuples
with low Hamming weight whose syndrome has also a low wei§ke [9.19].

9.2. Turbo codes 287

but we can think of a more general turbo coding scheme). Meretet the compo-
nent codes be recursive. Then, it can be shown [9.14] thahthinum Hamming
distance grows likex!~2/B. More precisely, given a cod@, let (d) denote the
set of its nonzero words with weightt. .. d. If we choose at random a parallel
concatenated code using B equal recursive convolutional codes and the block
length isn, then as» — oo we have, for every > 0,

plle(n'#7) =0l =1 and P[e(n¥5)

Notice how this result implies that a turbo code with only tparallel branches
has a minimum distance that does not grow as any power, @fhereas if three
branches are allowed then the growthi¢3.3

For serially concatenated codes the minimum-distancevio@hia quite differ-
ent. Let us pick at random a code from an ensemble of serialigatenated turbo
codes. Moreover, let, denote the free Hamming distance of the outer code. Then,
asn — oo we have, for every > 0,

P HG <n1_2/d°_6> = O} —1 and P HG <n1_2/d°+6>

:@How&

:@ﬁo

(9.9)
We see that if the outer code has a laifjeve can achieve a growth rate close to
linear withn.

9.2.4 EXIT charts

Since the turbo algorithm operates by exchanging extrimgissages between two
SISO decoders, its convergence may be studied by examimawgthese evolve
with iterations. A convenient graphical description ofstiprocess is provided by
EXIT charts [9.28], which yield quite accurate, albeit neaet, results, especially
in the waterfall region of the error-probability curve offho codes. An EXIT
chart is a graph that illustrates the input-output relatiop of a SISO decoder
by showing the transformations induced on a single paranassociated with in-
put and output extrinsic probabilities. The upside of EXHart analyses is that
only simulation of the behavior of the individual decodessnieeded, instead of
computer-intensive error counting with the full decodimggedure.

Let us focus on the binary alphat¥ét= {+1}, and assume an AWGN channel,
so that the observed signal is

Yy=x+=z

3For B = 2, an upper bound to the minimum distance of a turbo codalf@ossibleinterleavers
is derived in [9.5].

288 Chapter 9. LDPC and turbo codes

with z ~ N(0, 02). Since

A np(y’x +1)
Aw) =h D=1
takes value 5
Ay) = 5 (x+2) (9.10)

and hence, givenm, A is conditionally Gaussian: we write

Aly) |z ~N <%w %) (9.11)

z UZ
In summary, we may say that(y) | ~ N(u,0?), and that it satisfies the “con-

sistency condition” [9.25]
p=1x0?/2 (9.12)

The above allows us to write

p(A]x)= ;e_(/_MQ/W/QU2 (9.13)
2no

EXIT-chart techniques are based on the empirical evidemaeextrinsic mes-
sages, when expressed in the form of log-likelihood ratammroach a Gaussian
distribution satisfying the consistency condition (9.12)addition, for large block
lengths (and hence large interleavers) the messages eeathaemain approxi-
mately uncorrelated from the respective channel obsemnatover many itera-
tions [9.28]. Under the Gaussian assumption, the extrimgssages are charac-
terized by a single parameter, which is commonly and coevelyi chosen to be
the mutual information exchanged between the LLR and thdam@nvariablex
(see [9.29] for experiments that justify this choice):

1 p(Alz)
I(z;A) = = / Alz)lo dA 9.14
(:) 2%}{;} p(AJz)log £ 2 (9.14)
with p(A) = 0.5[p(Alz = —1) + p(Alz = +1)] under the assumption that

takes on equally likely values. In particularAfis conditionally Gaussian, and the

9.2. Turbo codes 289

0.9

0.8

0.7

0.6

J0?)

0.5

0.4

0.3

0.2

0.1

0.1 1 10 100

Figure 9.18:Plot of the function] (¢%) defined in (9.15).

consistency condition (9.12) is satisfied, thém; A) does not depend on the value
of z, and we have explicitly (z; A) = J(o?), where

> 1 2 /912 /9,52
J(o? A 1_/ —[(w—xz04/2) /20’]1 14+ e %%)d
(©?) " og(1 +¢ %) du

= 1-E [log (1 — e_xA)] (9.15)

whereE is taken with respect to the paf (zo?/2, o%). The functionJ(c?) (plot-
ted in Fig. 9.18) is monotonically increasing, and takesi@alfrom0 (for c — 0)
to 1 (for o — o0). If the assumption of conditional Gaussianity Aris not made,
a convenient approximation @{x; A), based on the observation df samples of
the random variabld, is based on (9.15):

N
1
I)~ 1=+ ;bg (1 + exp(—ziA;)) (9.16)

Recall now that we have four different messages at the inpdtoatput of a
SISO decoder: a priori, channel observation, soft-degjsémd extrinsic. we de-
note these messages fo%, 1.°, ud, andp°, respectively, and by?, I°, 14, andre,

290 Chapter 9. LDPC and turbo codes

u X A° Ad
encoder GRNG » —
T2 SISO
% A decoder Ic
GRNG » —
T52

Figure 9.19: Computing the transfer functioli. GRNG is a Gaussian random
noise generator.

respectively, the mutual informations exchanged betwheir t LRs andx. We
describe the behavior of a SISO processor used in iteratigeding by giving its
extrinsic information transfe(EXIT) function

I° = T(I*,1°) (9.17)

Fig. 9.19 schematizes the Monte Carlo derivation of the Exi@rt for a given
code. Choose first the values Bf and/°. The random vecton of uncodec4-1
symbols is encoded to generate the vestoA Gaussian random noise generator
outputs, for each componentof x, the LLR A° such that
2
A°lx ~ N (x% 02>

el

whereo? = J~1(I°). Similarly, another Gaussian random noise generator tsjtpu
for each component of u, the LLR A? such that

2
A*lu ~N <uﬁ, O'i)
2

whereo? = J~1(I%). These two LLRs correspond to messages entering the SISO
decoder. This outputs the LLRs! andAe°. Only the latter is retained, an¥l val-
ues of it are used to approximatethrough (9.16), so that no Gaussian assumption
is imposed om\°.

Once the transfer functions of both decoders have beemebatihey are drawn
on a single chart. Since the output of a decoder is the inptheobther one, the
second transfer functions is drawn after swapping the aseshown in the exam-
ple of Fig. 9.20 (here the two decoders are equal). The behaftithe iterative
decoding algorithm is described by a trajectory, i.e., aisage of moves, along

9.2. Turbo codes 291

E/Ny=0.65d8 —
Eg/Ng = 1.00 dB ——

0.8 %

07 == P //

06 vl

0.5 e /;,:;,, /

0.4 //{
. oy
’ 4

P Ve

0.2

0.1 /
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
|2

e
|

Figure 9.20: EXIT chart for a ratet/2 convolutional code and two values of
&p/No.

horizontal and vertical steps, through the pair of tranifactions. Iterations start
with no a priori knowledge, so thd® = 0. Due to the channel observations, the
corresponding value of¢ at the output of the first SISO decoder increases with
&y/No. The resulting extrinsic message if fed to the second decedech cor-
responds to moving along a horizontal line joining the tvamgfer functions. We
thus obtain the value of° at the output of the second decoder. The correspond-
ing message is fed back to the first decoder, whose outputsytbe value off
obtained by joining the two curves with a vertical line, ands.

Fig. 9.20 shows two examples of convergence behavior€Fa¥, = 0.65 dB,
the two curves intersect, the trajectory is blocked, and xpegence no conver-
gence to large values of mutual information (which corresbim small error prob-
abilities). For€, /Ny = 1 dB, instead, we have convergence.

Estimates of the error probability of a coded system can lpersmposed to
EXIT charts to offer some extra insight in the performancehefiterative decoder.
If the LLR A4 is assumed to be conditionally Gaussian, with mean= xa§/2

292 Chapter 9. LDPC and turbo codes

and variances3, the bit error rate (BER) can be approximated in the form

Pye)=P(AY>0|z=-1)~Q (M> =Q (ﬁ) (9.18)

o4 2

SinceAd = A° + A® + A®, the assumption of independent LLR’s leads to

2 2 2 2
0q =05 to,+o0g5,

which in turn yields

Py(e) %Q<\/J1(I°)+J21(Ia)+t71(Ie)> (9.19)

Notice that, due to (9.11), we have

4 3
o2 = - :4SNR:8pFI;

N

wherep is the rate of the concatenated code. Fig. 9.21 superimpheeSXIT
chart corresponding t8,/Ny = 1 dB to a set of constant-BER curves. Compar-
ison of this Figure with Fig. 9.22, obtained by Monte Carlmsiation, shows a
good match between the “true” BERs and those predicted byl EKarts. In ad-
dition, observing the evolution of the constant-BER cupa®e can observe how
traversing the “bottleneck” region between the two curvesesponds to a slow
convergence of the BER. Once the bottleneck is passeds tasteergence of BER
is achieved.

Accuracy of EXIT-chart convergence analysis

In the upper portion of the EXIT chart, extrinsic messagesolbee increasingly
correlated, and the true evolution Bfdeviates from the behavior predicted by the
chart. As correlations depend also on the interleaver #gimeexpected that EXIT
analyses become more accurate as it increases.

9.3 Bibliographical notes

Low-density parity-check codes were introduced by GaHlagéis doctoral the-
sis [9.12], and rediscovered in the mid-90s [9.18]. ReR]Previews techniques
for constructing LDPC codes whose graph have large girthPCRiecoding al-
gorithms are analyzed in [9.12,9.18]. LDPC codes over nmarialphabets are

9.3. Bibliographical notes 293

001

09 // 0.002
08 y 005

0.01 /
0.7

06 // 0.02
o 05 / /'
0.4 : //{b
-
0.3 / ;
02 i :
o1 01 -/
0.12 //
0 » ; .
0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1

a
|

Figure 9.21: EXIT chart as in Fig. 9.20, foE,/Ny = 1 dB, superimposed to
constant-BER curves.

examined in [9.8]. Turbo codes, and their iterative decpdilyorithm, were first
presented to the scientific community in [9.4]. The itemt{iturbo”) decoding
algorithm was shown in [9.17] to be an instance of J. Peabkdiéf propagation”
in graphs [9.22]. Our presentation of SISO decoders foll[@23].

The capacity-approaching codes described in this chaperav finding their
way into a number of practical applications, ranging from UB&o wireless local-
area networks, deep-space communication, and digitabvideadcasting. A list
of practical implementations of LDPC codes can be found ia4p

Richardson and Urbanke [9.6] have introduced the studyeo&ttolution of the
probability distribution of the exchanged messages as ladogtudy the conver-
gence behavior of turbo algorithms. EXIT charts, which elterize these distri-
butions using a single parameter, were advocated in [92@8plication of EXIT
charts to LDPC codes, a topic not considered here, is destiib]9.2].

Computation of bounds to the error probability of turbo codan be found
in [9.9,9.27].

294 References

1 :
q:]_ —_——
q:2 —_—
q:4 —_—
) q:8 —_—
10 9=16 1
R R S G S S g o s S
\ \\ _\\\
5 \\ \\

10°

AN W
AN
g
L \

0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50
Ey/N, (dB)

BER

Figure 9.22:Convergence of a turbo code based on two equal convolutamkds
as in Fig. 9.20 (simulation results).

9.4 Problems

1. Once the matriH of an LDPC code is selected, show how the generator
matrix G can be obtained. Consider separately the caskEdving or not
having full rank. I1sG a sparse matrix?

2. Derive EXIT charts for some simple convolutional codesuasing/? = 0.
Interpret the shape of the functions.

3. Extend the EXIT-chart analysis to the frequency-flatvstalependent Rayleigh
fading channel.

References

[9.1] B. Ammar, B. Honary, Y. Kou, J. Xu, and S. Lin, “Consttion of low-density
parity-check codes based on balanced incomplete blocgrieSIEEE Trans. In-
form. TheoryVol. 50, No. 6, pp. 1257-1268, June 2004.

References 295

[9.2] M. Ardakaniand F. R. Kschischang, “Designing irreyulPDC codes using EXIT
charts based on message error raBegc. 2002 IEEE Int. Symp. Inform. Theory
Lausanne, Switzerland, p. 454, June 30-July 5, 2002.

[9.3] C. Berrou and A. Glavieux, “Near optimum error coriagtcoding and decoding:
Turbo codes,"[EEE Trans. CommunMol. 44, No. 10, pp. 1261-1271, October
1996.

[9.4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Nearadhon limit error-
correcting coding: Turbo codes?roc. IEEE 1993 Int. Conf. Commun. (ICC93)
Geneva, Switzerland, pp. 1064-1070, May 1993.

[9.5] M. Breiling, J. B. Huber, “Combinatorial analysis &g minimum distance of turbo
codes,"IEEE Trans. Inform. Theoryol. 47, No. 7, pp. 2737-2750, Nov. 2001.

[9.6] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Amsid of sum-product de-
coding of low-density parity-check codes using a Gaussmoraimation,”|EEE
Trans. Inform. Theorol. 47, No. 2, pp. 657-670, Feb. 2001.

[9.7] M. C. Davey,Error-correction using Low-Density Parity-Check Cod&hD Dis-
sertation, Univ. of Cambridge, Dec. 1999.

[9.8] M. C. Davey and D. J. C. MacKay, “Low density parity ckaamdes over GF),”
IEEE Comm. LettMol. 2, No. 6, pp. 165-167, June 1998.

[9.9] D. Divsalar and E. Biglieri, “Upper bounds to error pabilities of coded systems
beyond the cutoff rate [EEE Trans. CommunVol. 51, No. 12, pp. 2011-2018,
Dec. 2003.

[9.10] J. L. Fan, “Array codes as low-density parity-cheokles,”Proc. 2nd Int. Symp. on
Turbo Codes & Related TopicBrest, France, pp. 543-546, Sept. 4—7, 2000.

[9.11] M. P. C. Fossorier, “Quasi-cyclic low-density pgritheck codes from circulant
permutation matrices|EEE Trans. Inform. Theoryol. 50, No. 8, pp. 1788—-1793,
Aug. 2004.

[9.12] R. G. GallagerLow-density Parity-Check Code€ambridge, MA: MIT Press,
1963.

[9.13] B. Honaryet al, “On construction of low density parity check codeg&fid Int.
Workshop on Signal Processing for Wireless Communicati®R¥VC 2004)Lon-
don, U.K., June 2—-4, 2004.

[9.14] N. Kahale and R. Urbanke, “On the minimum distancearffiel and serially con-
catenated codesProc. IEEE ISIT 1998Cambridge, MA, p. 31, Aug. 16-21, 1998.

[9.15] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-densityripg-check codes based on
finite geometries: A rediscovery and new result§EE Trans. Inform. Theory
\Vol. 47, No. 7, pp. 2711-2736, November 2001.

296 References

[9.16] R. Lucas, M. P. C. Fossorier, Y. Kou, and S. Lin, “Itéra decoding of one-step
majority logic decodable codes based on belief propagati&tE Trans. Com-
mun, Vol. 48, No. 6, pp. 931-937, June 2000.

[9.17] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Tudecoding as an instance
of Pearl’s “belief propagation” algorithm/EEE Journal Select. Areas Commun.
\ol. 16, No. 2, pp. 140-152, February 1998.

[9.18] D. J. C. MacKay, “Good error correcting codes based/@ry sparse matrices,”
IEEE Trans. Inform. Theophol. 45, No. 2, pp. 399-431, March 1999. (See also
Errata,ibidem Vol. 47, No. 5, p. 2101, July 2001.)

[9.19] D. J. C. MacKay and M. S. Postol, “Weaknesses of Masgahd Ramanujan-
Margulis low-density parity-check code€lectronic Notes in Theoretical Com-
puter ScienceVol. 74, pp. 1-8, 2003.

[9.20] N. Miladinovic and M. Fossorier, “Systematic reduesconstruction of LDPC
codes,"IJEEE Commun. Letters/ol. 8, No. 5, pp. 302-304, May 2004.

[9.21] J. M. F. Moura, J. Lu, and H. Zhang, “Structured lowndity parity-check codes,”
IEEE Signal Processing Magazingol. 21, No. 1, pp. 42-55, Jan. 2004.

[9.22] J. PearlProbabilistic Reasoning in Intelligent Systems: NetwarkPlausible In-
ference San Francisco, CA: Morgan Kaufmann, 1988.

[9.23] O. PothierCodes Composites ConstruasPartir de Graphes et Leur &codage
Itératif. Ph.D. Dissertationizcole Nationale Supérieure des Té€lécommunications,
Paris, France, Jan. 2000.

[9.24] T. Richardson and R. Urbanke, “The renaissance o&@at's low-density parity-
check codes,JEEE Commun. Magazin&ol. 41, No. 8, pp. 126-131, Aug. 2003.

[9.25] T. Richardson, A. Shokrollahi, and R. Urbanke, “Resbf provably good low-
density parity-check codesProc. 2000 IEEE Int. Symp. Inform. Theory (ISIT
2000) Sorrento, Italy, p. 199, June 25-30, 2000.

[9.26] D. N. Rowitch and L. B. Milstein, “On the performancehybrid FEC/ARQ sys-
tems using rate compatible punctured turbo (RCPT) cotleEE Trans. Commun.
Vol. 48, No. 6, pp. 948-959, June 2000.

[9.27] I. Sason and S. Shamai (Shitz), “On improved boundtherdecoding error prob-
ability of block codes over interleaved fading channelghwipplications to turbo-
like codes,”IEEE Trans. Inform. Theon\ol. 47, No. 6, pp. 2275-2299, Sept.
2001.

[9.28] S. ten Brink, “Convergence behavior of iterativelycdded parallel concatenated
codes,"IEEE Trans. Commun\ol. 49, No. 10, pp. 1727-1737, Oct. 2001.

[9.29] M. Tuchler, S. ten Brink, and J. Hagenauer, “Measudog tracing convergence of
iterative decoding algorithmsProc. 4th IEEE/ITG Conf. on Source and Channel
Coding Berlin, Germany, pp. 53—60, Jan. 2002.

