PROBABILISTIC SIGNAL PROCESSING ON NORMAL FACTOR GRAPH ARCHITECTURES

Francesco A. N. Palmieri

Dipartimento di Ingegneria Industriale e dell'Informazione Seconda Università di Napoli (SUN) - Italy

Graduate Students:
Amedeo Buonanno
Francesco Castaldo
Anna Di Benedetto

Master's Students:
Luigi Di Grazia
Pasquale Coscia

Outline:

- Motivation and introduction to Bayesian thinking
- Belief propagation in factor graphs in Normalized Reduced Form
- Localized Learning
- A Simulink architecture
- Applications:

Learning non linear functions
Tracking by fusing camera information
Multi-layer convolution graphs
Deep Belief quad-tree factor graphs

- Probabilistic computing machines
- Conclusions and trends

Intelligence = manage uncertainties

Smart fusion consists in providing the best answer with any available information, with both discrete and continuous variables, noise, erasures, errors, hard logic, weak syllogisms,
 etc.
...The "new" perception amounts to the recognition that the mathematical rules of probability theory are not merely rules for calculating frequencies of "random variables"; they are also the unique consistent rules for conducting inference (i.e. plausible reasoning) of any kind...
.....each of his (Kolmogorov's) axioms turns out to be, for all practical purposes, derivable from the Polya-Cox desiderata of rationality and consistency. In short, we regard our system of probability as not contradicting Kolmogorov's; but rather seeking a deeper logical foundation that permits its extension in the directions that are needed for modern applications....

Jaynes E.T., Probability Theory: The Logic of Science, Cambridge University Press (2003)

Why use graphs?

We think on graphs!

The graph represents most of our a priori knowledge about a problem.

If everything were connected to everything:

Neural network

Bayesian reasoning

Markov random field

Circuit diagram

The graph models dependencies

Given N (deterministic or random) variables $X_{1}, X_{2}, \ldots, X_{N}$, model all possible dependencies

$$
p\left(X_{1} X_{2} \ldots X_{N}\right) \quad(\text { joint } \quad \text { pdf })
$$

Knowledge of the structural dependencies is in the factorization (graph) of p Group the variables in M subsets $\left\{\mathcal{S}_{c}, c=, 1, \ldots, M\right\}$ (cliques)

$$
\begin{gathered}
p\left(X_{1} X_{2} \ldots X_{N}\right) \propto \prod_{c=1}^{M} \Psi_{c}\left(\bigcap_{j \in \mathcal{S}_{c}} X_{j}\right) \quad\left(\Psi_{c} \text { potential functions }\right) \\
p\left(X_{1} X_{2} \ldots X_{N}\right) \propto \exp \left(\sum_{c=1}^{M} \phi_{c}\left(\bigcap_{j \in \mathcal{S}_{c}} X_{j}\right)\right) \quad\left(\phi_{c} \text { energy functions }\right)
\end{gathered}
$$

To see how many choices we have, use the chain rule

$$
p\left(X_{1} X_{2} \ldots X_{N}\right)=\prod_{j=1}^{N} p\left(X_{j} \mid X_{j+1} \ldots X_{N}\right)
$$

drop some conditioning variables using conditional independence assumptions. There are N ! ways of rearraging the variables.

What kind of Bayesian graph ?

Undirected
graph

Directed graph

[1] F. R. Kschischang, B. Frey, and H. Loeliger, "Factor graphs and the sumproduct algorithm," IEEE Transactions on Information Theory, vol. 47, pp. 498-519, 2001.
[2] G. D. Forney, "Codes on graphs: normal realizations," IEEE Transactions on Information Theory, vol. 47, pp. 520-548, 2001.
[3] F. A. N. Palmieri, "A Comparison of Algorithms for Learning Hidden Variables in Normal Graphs", submitted for journal publication, 2014, available on arXiv: 1308.5576 v 1 [stat.ML]

Example 1: (to see how message propagation works)

$$
p_{X_{1} X_{2}}\left(x_{1} x_{2}\right)=p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) \pi_{X_{1}}\left(x_{1}\right)
$$

Possible use: observe $X_{2}=x_{2}^{0}$ and infer on X_{1}

$$
\begin{gathered}
p\left(x_{1} \mid X_{2}=x_{2}^{0}\right)=\frac{p\left(X_{2}=x_{2}^{0} \mid x_{1}\right) \pi_{X_{1}}\left(x_{1}\right)}{p\left(X_{2}=x_{2}^{0}\right)} \propto \underbrace{p\left(X_{2}=x_{2}^{0} \mid x_{1}\right)}_{b_{X_{1}}\left(x_{1}\right)} \underbrace{\pi_{X_{1}}\left(x_{1}\right)}_{f_{X_{1}}\left(x_{1}\right)} \\
b_{X_{1}}\left(x_{1}\right)=\int_{\mathcal{X}_{2}} p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) \underbrace{\delta\left(x_{2}-x_{2}^{0}\right)}_{b_{X_{2}}\left(x_{2}\right)} d x_{2} \\
f_{X_{2}}\left(x_{2}\right)=\int_{\mathcal{X}_{1}} p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) \underbrace{\pi_{X_{1}}\left(x_{1}\right)}_{f_{X_{1}}\left(x_{1}\right)} d x_{1}
\end{gathered}
$$

Example 1: (cont.)

$p_{X_{1} X_{2}}\left(x_{1} x_{2}\right)=p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) \pi_{X_{1}}\left(x_{1}\right)$
Possible use: use soft knowledge on $X_{2}, \pi_{X_{2}}\left(x_{2}\right)$ and infer on X_{1}

$$
\begin{aligned}
& \begin{array}{c}
p\left(x_{1} \mid \pi_{X_{2}}\right) \stackrel{\text { def }}{=} \int_{\mathcal{X}_{2}} p\left(x_{1} \mid X_{2}=x_{2}\right) \pi_{X_{2}}\left(x_{2}\right) d x_{2} \propto \underbrace{\pi_{X_{1}}\left(x_{1}\right)}_{f_{X_{1}}\left(x_{1}\right)} \underbrace{\int_{\mathcal{X}_{2}} p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) \underbrace{\pi_{x_{X_{2}}\left(x_{2}\right)}\left(x_{2}\right)}_{b_{X_{1}}\left(x_{1}\right)} d x_{2}}_{\text {average posterior }}
\end{array}
\end{aligned}
$$

Sum-Product rule

EXannole : $\quad p_{X_{1} X_{2} X_{3}}\left(x_{1} x_{2} x_{3}\right)=p_{X_{3} \mid X_{2}}\left(x_{3} \mid x_{2}\right) p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) \pi_{X_{1}}\left(x_{1}\right)$

Possible use: observe $X_{3}=x_{3}^{0}$, use soft knowledge on $X_{2}, \pi_{X_{2}}\left(x_{2}\right)$ and infer on X_{1}

Insert a T-junction in the probability pipeline

$$
\begin{aligned}
& f_{X_{1}}\left(x_{1}\right)=\pi_{X_{1}}\left(x_{1}\right) ; f_{X_{2}^{1}}\left(x_{2}\right)=\pi_{X_{2}}\left(x_{2}\right) ; \\
& b_{X_{2}^{3}}\left(x_{2}\right) \propto \int_{\mathcal{X}_{3}} p_{X_{3} \mid X_{2}}\left(x_{3} \mid x_{2}\right) b_{X_{3}}\left(x_{3}\right) d x_{3} ; \text { (sum) } \\
& \left.b_{X_{2}^{2}}\left(x_{2}\right) \propto f_{X_{2}^{1}}\left(x_{2}\right) b_{X_{2}^{3}}\left(x_{2}\right) ; \text { (product }\right) \\
& b_{X_{1}}\left(x_{1}\right) \propto \int_{\mathcal{X}_{2}} p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) b_{X_{2}^{2}}\left(x_{2}\right) d x_{2} ; \text { (sum) } \\
& p\left(x_{1} \mid \pi_{X_{2}}, X_{3}=x_{3}^{0}\right) \propto f_{X_{1}}\left(x_{1}\right) b_{X_{1}}\left(x_{1}\right) \text { (product) }
\end{aligned}
$$

Message propagation rules are rigorous translation of Bayes theorem and marginalization

Some architectures reduced normal form :

A tree with 8 variables

You will never look at a function in the same way !!

$C=A+B$ (arithmetic sum - deterministic function);
$A \in\{0,1\} ; B \in\{0,1\} ; C \in\{0,1,2\}$

$P_{1}=\frac{2}{4} I_{2} \otimes 1_{2}^{T}=\left[\begin{array}{cccc}\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2}\end{array}\right] ;$
$P_{2}=\frac{2}{4} 1_{2}^{T} \otimes I_{2}=\left[\begin{array}{cccc}\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2}\end{array}\right] \quad P_{3}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] ;$
INPUTS: $b_{A^{2}}=\left[\begin{array}{c}.1 \\ .9\end{array}\right] ; b_{B^{2}}=\left[\begin{array}{c}.99 \\ .01\end{array}\right] ; b_{C}=\left[\begin{array}{c}.33 \\ .33 \\ .33\end{array}\right]$;

OUTPUTS: $f_{A^{2}}=\left[\begin{array}{c}.5 \\ .5\end{array}\right] ; f_{B^{2}}=\left[\begin{array}{c}.5 \\ .5\end{array}\right] ; f_{C}=\left[\begin{array}{c}.01 \\ .98 \\ .01\end{array}\right]$;
INPUTS: $b_{A^{2}}=\left[\begin{array}{c}.5 \\ .5\end{array}\right] ; b_{B^{2}}=\left[\begin{array}{c}.99 \\ .01\end{array}\right] ; b_{C}=\left[\begin{array}{c}.2 \\ .8 \\ .0\end{array}\right]$;
OUTPUTS: $f_{A^{2}}=\left[\begin{array}{c}.21 \\ .79\end{array}\right] ; f_{B^{2}}=\left[\begin{array}{c}.56 \\ .45\end{array}\right] ; f_{C}=\left[\begin{array}{c}.5 \\ .5 \\ .0\end{array}\right]$;

Easily extended to arbitrary-length N -bit adder

Issues:

1. Posterior calculation on trees is exact

(Pearl, 1988), (Lauritzen, 1996), (Jordan, 1998), (Loeliger, 2004), (Forney, 2001), (Bishop, 2006), (Barber, 2012),expressive power of trees if often limited, but a lot can be done with trees
2. "Loopy graphs" (Chertkov, Chernyak and Teodorescu, 2008), (Murphy, Weiss, and Jordan, 1999), (Yedidia, Freeman and Weiss, 2000, 2005), (Weiss, 2000), (Weiss and Freeman, 2001)
.......simple belief propagation can lead to inconsistencies
Junction Trees (Lauritzen, 1996); Cutset Conditioning (Bidyuk and R. Dechter, 2007); Monte Carlo sampling (see for ex. Koller and Friedman, 2010); Region method (Yedidia, Freeman and Weiss, 2005).; Tree Re-Weighted (TRW) algorithm (Wainwright, Jaakkola and Willsky, 2005);
.......sometimes using simple loopy propagation gives good results if the loops are wide

3. Parameter learning

EM-learning: (Heckerman, 1996), (Koller and Friedman, 2010), (Ghahramani, 2012); Variational Learning: (Winn and Bishop, 2005)

4. Structure Learning

Learning trees: (Chow and Liu, 1968) ,(Zhang, 2004), (Harmeling and Williams, 2011), (Palmieri, 2010), (Choi, Anandkumar and Willsky, 2011); Learning general architectures (Koller and Friedman, 2010)

5. Applications

Coding; HMM; Complex scene analysis; Fusion of heterogeneous sources;opportunity of integrating more traditional signal processing with higher levels of cognition!

Localized learning:

Hebbian hypothesis

There is a certain amount of bi-directionality in Hebbian algorithms! Is there a single unique algorithm???? (Fei Fei talk)

SOME OLD WORK:

F. Palmieri, C. Catello and G. D'Orio, "Inhibitory Synapses in Neural Networks with Sigmoidal Nonlinearities," IEEE Trans. on Neural Networks, Vol. 10, N. 3, pp. 635-644, May 1999.
F. Palmieri, J. Zhu, '`Self-Association and Hebbian Learning in Linear Neural Networks,"

IEEE Trans. on Neural Networks, Vol. 6, N. 5, pp. 1165-1183, Sept. 1995.
F. Palmieri, J. Zhu and C. Chang, "Anti-Hebbian Learning in Topologically Constrained Linear Neural Networks: a Tutorial ," IEEE Trans. on Neural Networks, Vol. 4, N. 5, 748-761, Sept. 1993.

In the graph in Reduced normal form learning is totally localized to SISO blocks

- Each block "sees" only local messages
- $P(Y / X)$ is a discrete-variable stochastic matrix
- EM approach on N training examples

$$
\begin{aligned}
& P\left(X Y A_{1} \ldots A_{U} C_{1} \ldots C_{V} ; \theta\right)=P\left(C_{1} \ldots C_{V} \mid Y\right) \underbrace{P(Y \mid X ; \theta)}_{\text {to be learned }} P\left(X A_{1} \ldots A_{U}\right) . \\
& L(\theta)=\prod_{n=1}^{N} \sum_{x} \sum_{y} p_{X[n] Y[n] \mathcal{E}[n]}(x y ; \theta)=\prod_{n=1}^{N} \sum_{x} \sum_{y} f_{X[n]}^{\prime}(x) p_{Y \mid X}(y \mid x ; \theta) b_{Y[n]}^{\prime}(y), \\
& \ell(\theta)=\log (L(\theta))=\sum_{n=1}^{N} \log \left(\mathbf{f}_{X[n]}^{T} \theta \mathbf{b}_{Y[n]}\right)+\sum_{n=1}^{N} \log \left(K_{f_{X[n]}} K_{b_{Y[n]}}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\min _{\theta}-\sum_{n=1}^{N} \log \left(\mathbf{f}_{X[n]}^{T} \theta \mathbf{b}_{Y[n]}\right), \quad\left\{\begin{array}{l}
\min _{\theta} \sum_{n=1}^{N} \sum_{i=1}^{M_{y}} b_{Y[n]}(j) \log \frac{b_{Y[n]}(j)}{f_{Y[n]}(j)}, \\
\theta \quad \text { row - stochastic, }
\end{array}, \quad\right. \text { row - stochastic }
\end{array}\right.
$$

ML learning

EM Algorithms:

ML Algorithm:
(1) $\theta_{l m} \longleftarrow \frac{\theta_{l m}}{\sum_{n=1}^{N} f_{X[n]}(l)} \sum_{n=1}^{N} \frac{f_{X[n]}(l) b_{Y[n]}(m)}{\mathbf{f}_{X[n]}^{T}} \theta_{\mathbf{b}_{Y[n]}}$,
(2) Row-normalize θ and back to (1)

KL Algorithm:
(1) $\theta_{l m} \longleftarrow \frac{\theta_{l m}}{\sum_{n=1}^{N} f_{X[n]}(l)} \sum_{n=1}^{N} \frac{f_{X[n]}(l) b_{Y[n]}(m)}{\sum_{i=1}^{M_{X}} \theta_{i m} f_{X[n]}(i)}$,
(2) Row-normalize θ and back to (1).

VITERBI-like Algorithm:

(1) $\mathbf{e}_{X[n]}=I_{M a x}\left(\mathbf{f}_{\mathbf{X}[\mathbf{n}]}\right)+\delta \mathbf{1}_{M_{X} \times 1}$;
$\mathbf{e}_{Y[n]}=I_{M a x}\left(\mathbf{b}_{\mathbf{Y}[\mathbf{n}]}\right)+\delta \mathbf{1}_{M_{Y} \times 1} ;$
(2) $\theta=\sum_{n=1}^{N} \mathbf{e}_{X[n]} \mathbf{e}_{Y[n]}^{T}$;
(3) Row-normalize θ.

VARIATIONAL Algorithm:
(1) $\theta_{l m} \longleftarrow \delta+\sum_{n=1}^{N} f_{X[n]}(l) b_{Y[n]}(m)$,
(2) Row-normalize θ.

1. Simulations on a single block;
2. Varying sharpness
3. Similar behaviour for more complicated architectures
4. Greedy search: Local minima (multiple restarts)
$N=60 ; M_{X}=5 ; M_{Y}=3 ;$
$E X=1 ; E Y=1 ;$

${ }_{i t}$ Evolution of coefficients
(a): $N=60 ; M_{X}=5 ; M_{Y}=3$;

(c): $N=100 ; \mathrm{M}_{X}=5 ; M_{Y}=10 ;$

${ }^{\text {it }}$ Evolution of the likelihood
F. A. N. Palmieri, "A Comparison of Algorithms for Learning Hidden Variables in Normal Graphs", submitted for journal publication, Jan 2014, arXiv: 1308.5576v1 [stat.ML]

Simulink Library

It uses two-way connection ports

Figure 1: FGrn components: (a) a variable branch; (b) a diverter; (c) a SISO block; (d) a source block.

Application 1: Learning a Nonlinear Function

Think of the function as a joint density $p(X, Y)$

1. Map input variables to an embedding space
2. Minimize $K L(b Y \| f Y)$
3. ~ tensor-product approximation

The objective is not to challenge in accuracy SVMs, MLPs, RBFs etc., but to see the function approximation problem as part of a unique architectural paradigm !

The factor graph for learning the D-dimensional function $Y_{a}=g\left(X_{1 a}, \ldots, X_{D a}\right)$.

Francesco A. N. Palmieri, "Learning Non-Linear Functions with Factor Graphs," IEEE Transactions on Signal Processing, Vol.61, N. 17, pp. 4360-4371, 2013.

Application 2: Tracking objects with cameras

Salerno (Italy) harbour (3 commercial cameras)

Typical views

Application 2: Tracking objects with cameras (cont.)

$$
\begin{aligned}
& \text { Image coordinates } \leftarrow \underset{\downarrow}{\leftarrow} \begin{array}{c}
\text { World coordinates } \\
\lambda_{k}^{i}\left(\begin{array}{c}
x_{k}^{i} \\
y_{k}^{i} \\
1
\end{array}\right)=H^{i}\left(\begin{array}{c}
X_{k} \\
Y_{k} \\
1
\end{array}\right) \\
\text { Homography matrix } \\
\text { (learned from calibration points) } \\
x_{k}^{i}=\frac{\lambda_{k}^{i} x_{k}^{i}}{\lambda_{k}^{i}}=\frac{h_{11}^{i} X_{k}+h_{12}^{i} Y_{k}+h_{13}^{i}}{h_{31}^{1} X_{k}+h_{32}^{2} Y_{k}+h_{33}^{i}}=q_{1}^{i}\left(X_{k}, Y_{k}\right), \\
y_{k}^{i}=\frac{\lambda_{k}^{i} y_{k}^{i}}{\lambda_{k}^{i}}=\frac{h_{21}^{i} X_{k}+h_{22}^{i} Y_{k}+h_{23}^{i}}{h_{31}^{i} X_{k}+h_{32}^{i} Y_{k}+h_{33}^{i}}=q_{2}^{i}\left(X_{k}, Y_{k}\right), \\
\dot{x}_{k}^{i}=\frac{d x_{k}^{i}}{d t}=q_{3}^{i}\left(X_{k}, Y_{k}, \dot{X}_{k}, \dot{Y}_{k}\right) \\
\dot{y}_{k}^{i}=\frac{d y_{k}^{i}}{d t}=q_{4}^{i}\left(X_{k}, Y_{k}, \dot{X}_{k}, \dot{Y}_{k}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { World coordinates } \leftarrow \text { Image coordinates } \\
& \qquad\left(\begin{array}{c}
X_{k} / \lambda_{k}^{i} \\
Y_{k} / \lambda_{k}^{i} \\
1 / \lambda_{k}^{i}
\end{array}\right)=R^{i}\left(\begin{array}{c}
x_{k}^{i} \\
y_{k}^{i} \\
1
\end{array}\right) \\
& X_{k}=\frac{X_{k} / \lambda_{k}^{i}}{1 / \lambda_{k}^{i}}=\frac{r_{11}^{i} x_{k}^{i}+r_{12}^{i} y_{k}^{i}+r_{13}^{i}}{r_{31}^{i} x_{k}^{i}+r_{r 2}^{i} y_{k}^{i}+r_{33}^{i}}=g_{1}^{i}\left(x_{k}^{i}, y_{k}^{i}\right), \\
& Y_{k}=\frac{Y_{k} / \lambda_{k}^{i}}{1 / \lambda_{k}^{i}}=\frac{r_{21}^{i} x_{k}^{i}+r_{22}^{i} y_{k}^{i}+r_{23}^{i}}{r_{31}^{i} x_{k}^{i}+r_{32}^{i} y_{k}^{i}+r_{33}^{i}}=g_{2}^{i}\left(x_{k}^{i}, y_{k}^{i}\right) \\
& \dot{X}_{k}=\frac{d X_{k}^{i}}{d t}=g_{3}^{i}\left(x_{k}^{i}, y_{k}^{i}, \dot{x}_{k}^{i}, \dot{y}_{k}^{i}\right) \\
& \dot{Y}_{k}=\frac{d Y_{k}^{i}}{d t}=g_{4}^{i}\left(x_{k}^{i}, y_{k}^{i}, \dot{x}_{k}^{i}, \dot{y}_{k}^{i}\right)
\end{aligned}
$$

Application 2: Tracking objects with cameras (cont)

Gaussian messages (means and covariances):

$$
\begin{aligned}
& f_{\mathbf{s}_{k}^{\mathcal{M}}}=\left\{A m_{f_{\mathbf{s}_{k-1}}}, A \Sigma_{f_{\mathbf{s}_{k-1}}} A^{T}\right\}, \\
& f_{\mathbf{s}_{k}^{\mathcal{M}}}=\left\{m_{f_{\mathbf{s}_{k} 0}}+m_{f_{w_{k}}}, \Sigma_{f_{\mathbf{s}_{k}}{ }^{0}}+\Sigma_{f_{\mathbf{w}_{k}}}\right\}, \\
& b_{\mathbf{s}_{k}^{\mathcal{M}}}=\left\{m_{b_{\mathbf{s}_{k}}}-m_{f_{\mathbf{w}_{k}}}, \Sigma_{b_{\mathbf{s}_{k} \mathcal{M}}}+\Sigma_{f_{\mathbf{w}_{k}}}\right\}, \\
& b_{\mathbf{s}_{k-1}}^{k}=\left\{\left(A^{T} \Sigma_{\mathbf{s}_{k} \mathcal{M}^{0}}^{-1} A\right)^{-1} A^{T} \sum_{\mathbf{s}_{k} \mathcal{M}^{0}}^{-1} m_{\mathbf{s}_{k} \mathcal{M}_{k}},\left(A^{T} \Sigma_{\mathbf{s}_{k}^{\mathcal{M}}}^{-1} A\right)^{-1}\right\} \\
& f_{\mathbf{s}_{k}}=f_{\mathbf{s}_{k}^{\mathcal{M}}} \odot\left(\odot_{j=1}^{N} f_{\mathbf{s}_{k}^{j}}\right), \\
& b_{\mathbf{s}_{k}^{M}}=b_{\mathbf{s}_{k}} \odot\left(\odot_{j=1}^{N} f_{\mathbf{s}_{k}^{\prime}}\right) \text {, } \\
& b_{\mathbf{s}_{k}^{i}}=b_{\mathbf{s}_{k}} \odot f_{\mathbf{s}_{k}^{\mathcal{M}}} \odot\left(\odot_{j=1, j \neq i}^{N} f_{\mathbf{s}_{k}^{j}}\right), i=1, \ldots, N .
\end{aligned}
$$

(Kalman filter equations "pipelined")
H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. Kschischang, The factor graph approach to model-based signal processing, Proceedings of the IEEE, vol. 95, no. 6, pp. 12951322, 2007.

Application 2: Tracking objects with cameras (cont.)

Background subtraction algorithm

No calibration error (covariances amplified $10^{\wedge} 6$)

With calibration error (10^-3; 10^-4)

Application 2: Tracking objects with cameras (cont.)

- Motion detection;
- Sea clutter (waves and wakes);
- Data association ;
- Birth and death of tracks;
- Multiple objects tracked using propagation of Gaussians mixtures.

Application 3: Multi-ayer convolution graphs

Striking achievements in "deep belief networks" rely on convolutional and recurrent structures in multi-layer neural networks (Hinton, Le Cun, Bengio, Ng)
\square Convolutive paradigms in Bayesian factor graphs?
\square Convolutive structures better than trees account for short distance chained dependences;
\square Expansion to hierarchies to capture long-term dependence at a gradually increasing scale.

Many many loops!!
It appears intractable for message propagation;

Stationarity allows a transformation

Fig. 1. Example of three-layer convolution graph with overlap $M=2$ on all layers.

Application 3: Multi-ayer convolution graph (cont.)

Explicit mapping to product space

$P_{S}=C P C^{T}$;
Learned from data
if the product space is too large

Application 3: Multi-layer convolution graph (cont.)

Fig. 6. The three-layer normal graph approximating the convolution graph of Figure 1 for $N=6$.

Answers
(forward flow)

Application 3: Multi-layer convolution graph (cont.)

- $d=27$ character set - HMM approximation
- EM algorithm and manual the triplets from the text.
- Embedding variables $M_{S}=59, M_{G}=100$ and $M_{H}=100$.
i think we are in rats alley where the dead men lost their bones [T.S. Eliot, "The Waste Land"]

Incomplete input: re ${ }^{\sim}$ the?? one- and two-layer graph, one error: re~their three-layer graph, no error: re ${ }^{\sim}$ the ${ }^{\sim} \mathbf{d}$

Incomplete input: $\mathbf{o n ~}^{\sim \sim}$ the? one- and two- layers: ost ${ }^{\sim}$ the ${ }^{\sim}$ even if in the two-layer response there is an equal maximum
probability on both \sim and \mathbf{i} three-layers increase the probability on \mathbf{i}

Wrong input: re~ $^{\sim} \mathbf{t k e}^{\sim}$ m
One- two-layers, errors; three layers, no error: $\mathbf{r e}^{\sim} \mathbf{t h e}^{\sim} \mathbf{d}$
Input: Ibeherde
one- two-layers, errors; three-layers, no error: \mathbf{e}^{\sim} the ${ }^{\sim}$ de
Arbitrary input: asteland

 three-layers (getting closer to the dataset): $\mathbf{k}^{\sim} \mathbf{w e}^{\sim}$ are

Application 4: Deep believe graph for images

Latent Variable Model (LVM)

Layer 3

Layer 2

Layer 1

Layer 0

Quad-Tree Architecture

Application 4: Deep belief graph for images (cont)

Learn one layer at a time (unsupervised)

32×32 images from the training set; Filtered and reduced to BW from Caltech101 (cars)

Application 4: Deepbelieve egaphorimages (cont)

Delta distribution

Bottom layer 8×8 patches

Embedding space size $=100$

1008×8 learned prototypes

Application 4: Deep believe graph for images (cont)
Delta distribution
I

Two layers

Embedding space size $=300$

100 out of 30016×16 learned prototypes

Application 4: Deep believe graph for images (cont)

Delta distribution

Three layers

Embedding space size $=300$

100 out of 30032×32 learned prototypes

Application 4: Deep believe graph for images (cont)

A. Buonanno and F.A.N. Palmieri, "Towards Building Deep Networks with Bayesian Factor Graphs", arXiv:1502.04492, Feb 2015, submitted for journal publication

Probabilistic computers ???

Traditional architecture

BUS

Probabilistic architecture (?!)

Probabilistic computers ???

Conclusions and open questions

- The Bayesian framework of factor graphs in reduced normal form appears to be very flexible to be applied as a general paradigm ;
- Bidirectional systems are very nice to work with and promise to change the way we think about signal processing;
- Multi-layer factor graphs architectures can be considered to build deepbelieve networks if we address the computational issues;
- Beyond hard logic for probabilistic computers;
- Applications of this framework to model complex scenes;
- Study the proper architecture (grow the architectures adaptively);
- Make the probability pipelines scale in complexity;
- New hardware/languages to manipulate uncertainties
- Introduction of control with actions nodes (Influence Diagrams)

Thanks for your kind attention.

francesco.palmieri@unina2.it

