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In writing this third edition of a classic book, I have been guided by the same underly-
ing philosophy of the first edition of the book:

Write an up-to-date treatment of neural networks in a comprehensive, thorough, and read-
able manner.

The new edition has been retitled Neural Networks and Learning Machines, in order to
reflect two realities:

1. The perceptron, the multilayer perceptron, self-organizing maps, and neuro-
dynamics, to name a few topics, have always been considered integral parts of
neural networks, rooted in ideas inspired by the human brain.

2. Kernel methods, exemplified by support-vector machines and kernel principal-
components analysis, are rooted in statistical learning theory.

Although, indeed, they share many fundamental concepts and applications, there are
some subtle differences between the operations of neural networks and learning ma-
chines. The underlying subject matter is therefore much richer when they are studied 
together, under one umbrella, particularly so when

• ideas drawn from neural networks and machine learning are hybridized to per-
form improved learning tasks beyond the capability of either one operating on its
own, and

• ideas inspired by the human brain lead to new perspectives wherever they are of
particular importance.

Moreover, the scope of the book has been broadened to provide detailed treat-
ments of dynamic programming and sequential state estimation, both of which have 
affected the study of reinforcement learning and supervised learning, respectively, in
significant ways.

Organization of the Book

The book begins with an introductory chapter that is motivational, paving the way for
the rest of the book which is organized into six parts as follows:

1. Chapters 1 through 4, constituting the first part of the book, follow the classical 
approach on supervised learning. Specifically,

Preface
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• Chapter 1 describes Rosenblatt’s perceptron, highlighting the perceptron con-
vergence theorem, and the relationship between the perceptron and the
Bayesian classifier operating in a Gaussian environment.

• Chapter 2 describes the method of least squares as a basis for model building.
The relationship between this method and Bayesian inference for the special
case of a Gaussian environment is established.This chapter also includes a dis-
cussion of the minimum description length (MDL) principle for model selection.

• Chapter 3 is devoted to the least-mean-square (LMS) algorithm and its con-
vergence analysis.The theoretical framework of the analysis exploits two prin-
ciples: Kushner’s direct method and the Langevin equation (well known in
nonequilibrium thermodynamics).

These three chapters, though different in conceptual terms, share a common
feature:They are all based on a single computational unit. Most importantly, they
provide a great deal of insight into the learning process in their own individual
ways—a feature that is exploited in subsequent chapters.

Chapter 4, on the multilayer perceptron, is a generalization of Rosenblatt’s
perceptron. This rather long chapter covers the following topics:
• the back-propagation algorithm, its virtues and limitations, and its role as an

optimum method for computing partial derivations;
• optimal annealing and adaptive control of the learning rate;
• cross-validation;
• convolutional networks, inspired by the pioneering work of Hubel and Wiesel

on visual systems;
• supervised learning viewed as an optimization problem, with attention focused

on conjugate-gradient methods, quasi-Newton methods, and the Marquardt–
Levenberg algorithm;

• nonlinear filtering;
• last, but by no means least, a contrasting discussion of small-scale versus large-

scale learning problems.
2. The next part of the book, consisting of Chapters 5 and 6, discusses kernel meth-

ods based on radial-basis function (RBF) networks.
In a way, Chapter 5 may be viewed as an insightful introduction to kernel

methods. Specifically, it does the following:
• presents Cover’s theorem as theoretical justification for the architectural struc-

ture of RBF networks;
• describes a relatively simple two-stage hybrid procedure for supervised learn-

ing, with stage 1 based on the idea of clustering (namely, the K-means algo-
rithm) for computing the hidden layer, and stage 2 using the LMS or the method
of least squares for computing the linear output layer of the network;

• presents kernel regression and examines its relation to RBF networks.
Chapter 6 is devoted to support vector machines (SVMs), which are com-

monly recognized as a method of choice for supervised learning. Basically, the
SVM is a binary classifier, in the context of which the chapter covers the fol-
lowing topics:
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• the condition for defining the maximum margin of separation between a pair
of linearly separable binary classes;

• quadratic optimization for finding the optimal hyperplane when the two classes
are linearly separable and when they are not;

• the SVM viewed as a kernel machine, including discussions of the kernel trick
and Mercer’s theorem;

• the design philosophy of SVMs;
• the �-insensitive loss function and its role in the optimization of regression 

problems;
• the Representer Theorem, and the roles of Hilbert space and reproducing ker-

nel Hilbert space (RKHS) in its formulation.
From this description, it is apparent that the underlying theory of support

vector machines is built on a strong mathematical background—hence their com-
putational strength as an elegant and powerful tool for supervised learning.

3. The third part of the book involves a single chapter, Chapter 7.This broadly based
chapter is devoted to regularization theory, which is at the core of machine learn-
ing. The following topics are studied in detail:
• Tikhonov’s classic regularization theory, which builds on the RKHS discussed in

Chapter 6.This theory embodies some profound mathematical concepts: the Fréchet
differential of the Tikhonov functional, the Riesz representation theorem, the
Euler–Lagrange equation, Green’s function, and multivariate Gaussian functions;

• generalized RBF networks and their modification for computational tractability;
• the regularized least-squares estimator, revisited in light of the Representer 

Theorem;
• estimation of the regularization parameter, using Wahba’s concept of general-

ized cross-validation;
• semisupervised learning, using labeled as well as unlabeled examples;
• differentiable manifolds and their role in manifold regularization—a role that

is basic to designing semisupervised learning machines;
• spectral graph theory for finding a Gaussian kernel in an RBF network used for

semisupervised learning;
• a generalized Representer Theorem for dealing with semisupervised kernel 

machines;
• the Laplacian regularized least-squares (LapRLS) algorithm for computing the

linear output layer of the RBF network; here, it should be noted that when the
intrinsic regularization parameter (responsible for the unlabeled data) is
reduced to zero, the algorithm is correspondingly reduced to the ordinary least-
squares algorithm.

This highly theoretical chapter is of profound practical importance. First, it provides
the basis for the regularization of supervised-learning machines. Second, it lays
down the groundwork for designing regularized semisupervised learning machines.

4. Chapters 8 through 11 constitute the fourth part of the book, dealing with unsu-
pervised learning. Beginning with Chapter 8, four principles of self-organization,
intuitively motivated by neurobiological considerations, are presented:



(i) Hebb’s postulate of learning for self-amplification;
(ii) Competition among the synapses of a single neuron or a group of neurons

for limited resources;
(iii) Cooperation among the winning neuron and its neighbors;
(iv) Structural information (e.g., redundancy) contained in the input data.

The main theme of the chapter is threefold:
• Principles (i), (ii), and (iv) are applied to a single neuron, in the course of which

Oja’s rule for maximum eigenfiltering is derived; this is a remarkable result 
obtained through self-organization, which involves bottom-up as well as top-
down learning. Next, the idea of maximum eigenfiltering is generalized to
principal-components analysis (PCA) on the input data for the purpose of
dimensionality reduction; the resulting algorithm is called the generalized Heb-
bian algorithm (GHA).

• Basically, PCA is a linear method, the computing power of which is therefore
limited to second-order statistics. In order to deal with higher-order statistics, the
kernel method is applied to PCA in a manner similar to that described in Chap-
ter 6 on support vector machines, but with one basic difference: unlike SVM,
kernel PCA is performed in an unsupervised manner.

• Unfortunately, in dealing with natural images, kernel PCA can become un-
manageable in computational terms. To overcome this computational limita-
tion, GHA and kernel PCA are hybridized into a new on-line unsupervised
learning algorithm called the kernel Hebbian algorithm (KHA), which finds
applications in image denoising.

The development of KHA is an outstanding example of what can be accomplished
when an idea from machine learning is combined with a complementary idea
rooted in neural networks, producing a new algorithm that overcomes their 
respective practical limitations.

Chapter 9 is devoted to self-organizing maps (SOMs), the development
of which follows the principles of self-organization described in Chapter 8. The
SOM is a simple algorithm in computational terms, yet highly powerful in its
built-in ability to construct organized topographic maps with several useful
properties:

• spatially discrete approximation of the input space, responsible for data generation;
• topological ordering, in the sense that the spatial location of a neuron in the

topographic map corresponds to a particular feature in the input (data) space;
• input–output density matching;
• input-data feature selection.

The SOM has been applied extensively in practice; the construction of contextual
maps and hierarchical vector quantization are presented as two illustrative ex-
amples of the SOM’s computing power. What is truly amazing is that the SOM
exhibits several interesting properties and solves difficult computational tasks, yet
it lacks an objective function that could be optimized. To fill this gap and thereby
provide the possibility of improved topographic mapping, the self-organizing map
is kernelized. This is done by introducing an entropic function as the objective

xiv Preface



Preface xv

function to be maximized. Here again, we see the practical benefit of hybridizing
ideas rooted in neural networks with complementary kernel-theoretic ones.

Chapter 10 exploits principles rooted in Shannon’s information theory as
tools for unsupervised learning. This rather long chapter begins by presenting a 
review of Shannon’s information theory, with particular attention given to the con-
cepts of entropy, mutual information, and the Kullback–Leibler divergence (KLD).
The review also includes the concept of copulas, which, unfortunately, has been
largely overlooked for several decades. Most importantly, the copula provides a
measure of the statistical dependence between a pair of correlated random vari-
ables. In any event, focusing on mutual information as the objective function, the
chapter establishes the following principles:

• The Infomax principle, which maximizes the mutual information between the
input and output data of a neural system; Infomax is closely related to redun-
dancy reduction.

• The Imax principle, which maximizes the mutual information between the sin-
gle outputs of a pair of neural systems that are driven by correlated inputs.

• The Imin principle operates in a manner similar to the Imax principle, except
that the mutual information between the pair of output random variables is
minimized.

• The independent-components analysis (ICA) principle, which provides a power-
ful tool for the blind separation of a hidden set of statistically independent
source signals. Provided that certain operating conditions are satisfied, the ICA
principle affords the basis for deriving procedures for recovering the original
source signals from a corresponding set of observables that are linearly mixed
versions of the source signals. Two specific ICA algorithms are described:

(i) the natural-gradient learning algorithm, which, except for scaling and per-
mutation, solves the ICA problem by minimizing the KLD between a pa-
rameterized probability density function and the corresponding factorial
distribution;

(ii) the maximum-entropy learning algorithm, which maximizes the entropy of
a nonlinearly transformed version of the demixer output; this algorithm,
commonly known as the Infomax algorithm for ICA, also exhibits scaling
and permutation properties.

Chapter 10 also describes another important ICA algorithm, known as FastICA,
which, as the name implies, is computationally fast.This algorithm maximizes a con-
trast function based on the concept of negentropy, which provides a measure of the
non-Gaussianity of a random variable. Continuing with ICA, the chapter goes on
to describe a new algorithm known as coherent ICA, the development of which
rests on fusion of the Infomax and Imax principles via the use of the copula; coherent
ICA is useful for extracting the envelopes of a mixture of amplitude-modulated
signals. Finally, Chapter 10 introduces another concept rooted in Shannon’s infor-
mation theory, namely, rate distortion theory, which is used to develop the last con-
cept in the chapter: information bottleneck. Given the joint distribution of an input
vector and a (relevant) output vector, the method is formulated as a constrained 
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optimization problem in such a way that a tradeoff is created between two amounts
of information, one pertaining to information contained in the bottleneck vector
about the input and the other pertaining to information contained in the bottle-
neck vector about the output.The chapter then goes on to find an optimal manifold
for data representation, using the information bottleneck method.

The final approach to unsupervised learning is described in Chapter 11, using
stochastic methods that are rooted in statistical mechanics; the study of statistical
mechanics is closely related to information theory. The chapter begins by review-
ing the fundamental concepts of Helmholtz free energy and entropy (in a statisti-
cal mechanics sense), followed by the description of Markov chains. The stage is
then set for describing the Metropolis algorithm for generating a Markov chain,
the transition probabilities of which converge to a unique and stable distribution.
The discussion of stochastic methods is completed by describing simulated an-
nealing for global optimization, followed by Gibbs sampling, which can be used as
a special form of the Metropolis algorithm.With all this background on statistical
mechanics at hand, the stage is set for describing the Boltzmann machine, which,
in a historical context, was the first multilayer learning machine discussed in the
literature. Unfortunately, the learning process in the Boltzmann machine is very
slow, particularly when the number of hidden neurons is large—hence the lack of
interest in its practical use. Various methods have been proposed in the literature
to overcome the limitations of the Boltzmann machine.The most successful inno-
vation to date is the deep belief net, which distinguishes itself in the clever way in
which the following two functions are combined into a powerful machine:
• generative modeling, resulting from bottom-up learning on a layer-by-layer

basis and without supervision;
• inference, resulting from top-down learning.
Finally, Chapter 10 describes deterministic annealing to overcome the excessive
computational requirements of simulated annealing; the only problem with 
deterministic annealing is that it could get trapped in a local minimum.

5. Up to this point, the focus of attention in the book has been the formulation of al-
gorithms for supervised learning, semisupervised learning, and unsupervised learn-
ing. Chapter 12, constituting the next part of the book all by itself, addresses
reinforcement learning, in which learning takes place in an on-line manner as the
result of an agent (e.g., robot) interacting with its surrounding environment. In re-
ality, however, dynamic programming lies at the core of reinforcement learning.
Accordingly, the early part of Chapter 15 is devoted to an introductory treatment
of Bellman’s dynamic programming, which is then followed by showing that the two
widely used methods of reinforcement learning: Temporal difference (TD) learn-
ing, and Q-learning can be derived as special cases of dynamic programming. Both
TD-learning and Q-learning are relatively simple, on-line reinforcement learning
algorithms that do not require knowledge of transition probabilities. However,
their practical applications are limited to situations in which the dimensionality
of the state space is of moderate size. In large-scale dynamic systems, the curse
of dimensionality becomes a serious issue, making not only dynamic programming,
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but also its approximate forms, TD-learning and Q-learning, computationally in-
tractable. To overcome this serious limitation, two indirect methods of approxi-
mate dynamic programming are described:

• a linear method called the least-squares policy evaluation (LSPV) algorithm, and
• a nonlinear method using a neural network (e.g., multilayer perceptron) as a

universal approximator.

6. The last part of the book, consisting of Chapters 13, 14, and 15, is devoted to
the study of nonlinear feedback systems, with an emphasis on recurrent neural
networks:

(i) Chapter 13 studies neurodynamics, with particular attention given to the sta-
bility problem. In this context, the direct method of Lyapunov is described.
This method embodies two theorems, one dealing with stability of the system
and the other dealing with asymptotic stability. At the heart of the method
is a Lyapunov function, for which an energy function is usually found to be
adequate. With this background theory at hand, two kinds of associative
memory are described:
• the Hopfield model, the operation of which demonstrates that a complex

system is capable of generating simple emergent behavior;
• the brain-state-in-a-box model, which provides a basis for clustering.
The chapter also discusses properties of chaotic processes and a regularized
procedure for their dynamic reconstruction.

(ii) Chapter 14 is devoted to the Bayesian filter, which provides a unifying basis
for sequential state estimation algorithms, at least in a conceptual sense.The
findings of the chapter are summarized as follows:

• The classic Kalman filter for a linear Gaussian environment is derived with
the use of the minimum mean-square-error criterion; in a problem at the
end of the chapter, it is shown that the Kalman filter so derived is a spe-
cial case of the Bayesian filter;

• square-root filtering is used to overcome the divergence phenomenon that
can arise in practical applications of the Kalman filter;

• the extended Kalman filter (EKF) is used to deal with dynamic systems
whose nonlinearity is of a mild sort; the Gaussian assumption is
maintained;

• the direct approximate form of the Bayesian filter is exemplified by a new
filter called the cubature Kalman filter (CKF); here again, the Gaussian as-
sumption is maintained;

• indirect approximate forms of the Bayesian filter are exemplified by par-
ticle filters, the implementation of which can accommodate nonlinearity as
well as non-Gaussianity.

With the essence of Kalman filtering being that of a predictor–corrector,
Chapter 14 goes on to describe the possible role of “Kalman-like filtering”
in certain parts of the human brain.



The final chapter of the book, Chapter 15, studies dynamically driven recur-
rent neural networks. The early part of the chapter discusses different structures
(models) for recurrent networks and their computing power, followed by two al-
gorithms for the training of recurrent networks:
• back propagation through time, and
• real-time recurrent learning.
Unfortunately both of these procedures, being gradient based, are likely to suffer
from the so-called vanishing-gradients problem. To mitigate the problem, the use
of nonlinear sequential state estimators is described at some length for the super-
vised training of recurrent networks in a rather novel manner. In this context, the
advantages and disadvantages of the extended Kalman filter (simple, but deriva-
tive dependent) and the cubature Kalman filter (derivative free, but more com-
plicated mathematically) as sequential state estimator for supervised learning are
discussed.The emergence of adaptive behavior, unique to recurrent networks, and
the potential benefit of using an adaptive critic to further enhance the capability
of recurrent networks are also discussed in the chapter.

An important topic featuring prominently in different parts of the book is 
supervised learning and semisupervised learning applied to large-scale problems. The
concluding remarks of the book assert that this topic is in its early stages of development;
most importantly, a four-stage procedure is described for its future development.

Distinct Features of the Book

Over and above the broad scope and thorough treatment of the topics summarized under
the organization of the book, distinctive features of the text include the following:

1. Chapters 1 through 7 and Chapter 10 include computer experiments involving the
double-moon configuration for generating data for the purpose of binary classifi-
cation.The experiments range from the simple case of linearly separable patterns
to difficult cases of nonseparable patterns. The double-moon configuration, as a
running example, is used all the way from Chapter 1 to Chapter 7, followed by
Chapter 10, thereby providing an experimental means for studying and compar-
ing the learning algorithms described in those eight chapters.

2. Computer experiments are also included in Chapter 8 on PCA, Chapter 9 on SOM
and kernel SOM, and Chapter 14 on dynamic reconstruction of the Mackay–Glass
attractor using the EKF and CKF algorithms.

3. Several case studies, using real-life data, are presented:
• Chapter 7 discusses the United States Postal Service (USPS) data for semisu-

pervised learning using the Laplacian RLS algorithm;
• Chapter 8 examines how PCA is applied to handwritten digital data and de-

scribes the coding and denoising of images;
• Chapter 10 treats the analysis of natural images by using sparse-sensory coding

and ICA;
• Chapter 13 presents dynamic reconstruction applied to the Lorenz attractor by

using a regularized RBF network.
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Chapter 15 also includes a section on the model reference adaptive control system
as a case study.

4. Each chapter ends with notes and references for further study, followed by end-
of-chapter problems that are designed to challenge, and therefore expand, the
reader’s expertise.

The glossary at the front of the book has been expanded to include explanatory
notes on the methodology used on matters dealing with matrix analysis and proba-
bility theory.

5. PowerPoint files of all the figures and tables in the book will be available to 
Instructors and can be found at www.prenhall.com/haykin.

6. Matlab codes for all the computer experiments in the book are available on the
Website of the publisher to all those who have purchased copies of the book. These
are available to students at www.pearsonhighered.com/haykin.

7. The book is accompanied by a Manual that includes the solutions to all the end-
of-chapter problems as well as computer experiments.
The manual is available from the publisher, Prentice Hall, only to instructors who
use the book as the recommended volume for a course, based on the material
covered in the book.

Last, but by no means least, every effort has been expended to make the book
error free and, most importantly, readable.

Simon Haykin
Ancaster,Ontario
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ABBREVIATIONS

AR autoregressive

BBTT back propagation through time
BM Boltzmann machine
BP back propagation
b/s bits per second
BSB brain-state-in-a-box
BSS Blind source (signal) separation

cmm correlation matrix memory
CV cross-validation

DFA deterministic finite-state automata

EKF extended Kalman filter
EM expectation-maximization

FIR finite-duration impulse response
FM frequency-modulated (signal)

GCV generalized cross-validation
GHA generalized Hebbian algorithm
GSLC generalized sidelobe canceler

Hz hertz

ICA independent-components analysis
Infomax maximum mutual information
Imax variant of Infomax
Imin another variant of Infomax

KSOM kernel self-organizing map
KHA kernel Hebbian algorithm

LMS least-mean-square
LR likelihood ratio
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LS Least-squares
LS-TD Least-squares, temporal-difference
LTP long-term potentiation
LTD long-term depression
LR likelihood ratio
LRT Likelihood ratio test

MAP Maximum a posteriori
MCA minor-components analysis
MCMC Markov Chan Monte Carlo
MDL minimum description length
MIMO multiple input–multiple output
ML maximum likelihood
MLP multilayer perceptron
MRC model reference control

NARMA nonlinear autoregressive moving average
NARX nonlinear autoregressive with exogenous inputs
NDP neuro-dynamic programming
NW Nadaraya–Watson (estimator)
NWKR Nadaraya–Watson kernal regression

OBD optimal brain damage
OBS optimal brain surgeon
OCR optical character recognition

PAC probably approximately correct
PCA principal-components analysis
PF Particle Filter
pdf probability density function
pmf probability mass function

QP quadratic programming

RBF radial basis function
RLS recursive least-squares
RLS regularized least-squares
RMLP recurrent multilayer perceptron
RTRL real-time recurrent learning

SIMO single input–multiple output
SIR sequential importance resampling
SIS sequential important sampling
SISO single input–single output
SNR signal-to-noise ratio
SOM self-organizing map
SRN simple recurrent network (also referred to as Elman’s recurrent 

network)
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SVD singular value decomposition
SVM support vector machine

TD temporal difference
TDNN time-delay neural network
TLFN time-lagged feedforward network

VC Vapnik–Chervononkis (dimension)
VLSI very-large-scale integration

XOR exclusive OR

IMPORTANT SYMBOLS

a action
aTb inner product of vectors a and b
abT outer product of vectors a and b

binomial coefficient

unions of A and B
B inverse of temperature
bk bias applied to neuron k
cos(a,b) cosine of the angle between vectors a and b
cu, v(u, v) probability density function of copula
D depth of memory

Kullback–Leibler divergence between 
probability density functions f and g
adjoint of operator D

E energy function
Ei energy of state i in statistical mechanics
� statistical expectation operator

average energy
exp exponential
eav average squared error, or sum of squared errors
e(n) instantaneous value of the sum of squared errors
etotal total sum of error squares
F free energy
f* subset (network) with minimum empirical risk
H Hessian (matrix)
H-1 inverse of Hessian H
i square root of -1, also denoted by j
I identity matrix
I Fisher’s information matrix
J mean-square error
J Jacobian (matrix)

�E�

D
~

Df��g

A ´ B

a l

m
b
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xxvi Abbreviations and Symbols

P1/2 square root of matrix P
PT/2 transpose of square root of matrix P
Pn,n�1 error covariance matrix in Kalman filter theory
kB Boltzmann constant
log logarithm
L(w) log-likelihood function of weight vector w
l(w) log-likelihood function of weight vector w based on a single example
Mc controllability matrix
Mo observability matrix
n discrete time
pi probability of state i in statistical mechanics
pij transition probability from state i to state j
P stochastic matrix
P(e|c) conditional probability of error e given that the input is drawn from

class c
P�

� probability that the visible neurons of a Boltzmann machine are in
state , given that the network is in its clamped condition (i.e.,
positive phase)

P�
� probability that the visible neurons of a Boltzmann machine are in state �,

given that the network is in its free-running condition (i.e., negative phase)
r̂x(j, k;n)] estimate of autocorrelation function of xj(n) and xk(n)
r̂dx(k;n) estimate of cross-correlation function of d(n) and xk(n)
R correlation matrix of an input vector
t continuous time
T temperature
t training set (sample)
tr operator denoting the trace of a matrix 
var variance operator
V(x) Lyapunov function of state vector x
vj induced local field or activation potential of neuron j
wo optimum value of synaptic weight vector
wkj weight of synapse j belonging to neuron k
w* optimum weight vector

equilibrium value of state vector x
average of state xj in a “thermal” sense

x̂ estimate of x, signified by the use of a caret (hat)
absolute value (magnitude) of x

x* complex conjugate of x, signified by asterisk as superscript
Euclidean norm (length) of vector x

xT transpose of vector x, signified by the superscript T
z�1 unit-time delay operator
Z partition function
δj(n) local gradient of neuron j at time n
∆w small change applied to weight w

gradient operator§

��x��

�x�

�xj�
x

�



2 Laplacian operator
gradient of J with respect to w
divergence of vector F

� learning-rate parameter
� cumulant
� policy
	k threshold applied to neuron k (i.e., negative of bias bk)

 regularization parameter

k kth eigenvalue of a square matrix
�k(�) nonlinear activation function of neuron k

symbol for “belongs to”
symbol for “union of”
symbol for “intersection of”

* symbol for convolution
� superscript symbol for pseudoinverse of a matrix
� superscript symbol for updated estimate

Open and closed intervals

• The open interval (a, b) of a variable x signifies that a  x  b.
• The closed interval [a, b] of a variable x signifies that a � x � b.
• The closed-open interval [a, b) of a variable x signifies that a � x  b; likewise for

the open-closed interval (a, b], a  x � b.

Minima and Maxima

• The symbol arg f(w) signifies the minimum of the function f(w) with respect
to the argument vector w.

• The symbol arg f(w) signifies the maximum of the function f(w) with respect 
to the argument vector w.

max
w

min
w

¨
´
�

� � F
§wJ
§
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GLOSSARY

NOTATIONS I: MATRIX ANALYSIS

Scalars: Italic lowercase symbols are used for scalars.

Vectors: Bold lowercase symbols are used for vectors.

A vector is defined as a column of scalars. Thus, the inner product of a pair of m-
dimensional vectors, x and y, is written as

where the superscript T denotes matrix transposition. With the inner product being a
scalar, we therefore have

yTx � xTy

Matrices: Bold uppercase symbols are used for matrices.

Matrix multiplication is carried out on a row multiplied by column basis.To illustrate, con-
sider an m-by-k matrix X and a k-by-l matrix Y.The product of these two matrices yields
the m-by-l matrix

Z � XY

More specifically, the ij-th component of matrix Z is obtained by multiplying the ith row
of matrix X by the jth column of matrix Y, both of which are made up of k scalars.

The outer product of a pair of m-dimensional vectors, x and y, is written as xyT,
which is an m-by-m matrix.

NOTATIONS II: PROBABILITY THEORY

Random variables: Italic uppercase symbols are used for random variables.The sample
value (i.e., one-shot realization) of a random variable is denoted by the corresponding

= a
m

i = 1
xiyi

≥ y1

y2

o
y

m

¥xTy = [x1, x2, ..., xm]
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italic lowercase symbol. For example, we write X for a random variable and x for its
sample value.

Random vectors: Bold uppercase symbols are used for random vectors. Similarly, the
sample value of a random vector is denoted by the corresponding bold lowercase sym-
bol. For example, we write X for a random vector and x for its sample value.

The probability density function (pdf) of a random variable X is thus denoted by
pX(x), which is a function of the sample value x; the subscript X is included as a reminder
that the pdf pertains to random vector X.



1 WHAT IS A NEURAL NETWORK?

Work on artificial neural networks, commonly referred to as “neural networks,” has
been motivated right from its inception by the recognition that the human brain com-
putes in an entirely different way from the conventional digital computer. The brain is
a highly complex, nonlinear, and parallel computer (information-processing system). It
has the capability to organize its structural constituents, known as neurons, so as to
perform certain computations (e.g., pattern recognition, perception, and motor con-
trol) many times faster than the fastest digital computer in existence today. Consider,
for example, human vision, which is an information-processing task. It is the function
of the visual system to provide a representation of the environment around us and,
more important, to supply the information we need to interact with the environment.
To be specific, the brain routinely accomplishes perceptual recognition tasks (e.g., rec-
ognizing a familiar face embedded in an unfamiliar scene) in approximately 100–200 ms,
whereas tasks of much lesser complexity take a great deal longer on a powerful
computer.

For another example, consider the sonar of a bat. Sonar is an active echolocation
system. In addition to providing information about how far away a target (e.g., a flying
insect) is, bat sonar conveys information about the relative velocity of the target, the
size of the target, the size of various features of the target, and the azimuth and eleva-
tion of the target.The complex neural computations needed to extract all this informa-
tion from the target echo occur within a brain the size of a plum. Indeed, an echolocating
bat can pursue and capture its target with a facility and success rate that would be the
envy of a radar or sonar engineer.

How, then, does a human brain or the brain of a bat do it? At birth, a brain already
has considerable structure and the ability to build up its own rules of behavior through
what we usually refer to as “experience.” Indeed, experience is built up over time, with
much of the development (i.e., hardwiring) of the human brain taking place during the
first two years from birth, but the development continues well beyond that stage.

A “developing” nervous system is synonymous with a plastic brain: Plasticity per-
mits the developing nervous system to adapt to its surrounding environment. Just as
plasticity appears to be essential to the functioning of neurons as information-processing
units in the human brain, so it is with neural networks made up of artificial neurons. In
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its most general form, a neural network is a machine that is designed to model the way
in which the brain performs a particular task or function of interest; the network is usu-
ally implemented by using electronic components or is simulated in software on a dig-
ital computer. In this book, we focus on an important class of neural networks that
perform useful computations through a process of learning. To achieve good perfor-
mance, neural networks employ a massive interconnection of simple computing cells
referred to as “neurons” or “processing units.” We may thus offer the following defini-
tion of a neural network viewed as an adaptive machine1:

A neural network is a massively parallel distributed processor made up of simple processing
units that has a natural propensity for storing experiential knowledge and making it available
for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning process.
2. Interneuron connection strengths, known as synaptic weights, are used to store the ac-

quired knowledge.

The procedure used to perform the learning process is called a learning algorithm,
the function of which is to modify the synaptic weights of the network in an orderly
fashion to attain a desired design objective.

The modification of synaptic weights provides the traditional method for the de-
sign of neural networks. Such an approach is the closest to linear adaptive filter theory,
which is already well established and successfully applied in many diverse fields (Widrow
and Stearns, 1985; Haykin, 2002). However, it is also possible for a neural network to
modify its own topology, which is motivated by the fact that neurons in the human brain
can die and new synaptic connections can grow.

Benefits of Neural Networks

It is apparent that a neural network derives its computing power through, first, its
massively parallel distributed structure and, second, its ability to learn and therefore
generalize. Generalization refers to the neural network’s production of reasonable
outputs for inputs not encountered during training (learning). These two information-
processing capabilities make it possible for neural networks to find good approximate
solutions to complex (large-scale) problems that are intractable. In practice, however,
neural networks cannot provide the solution by working individually. Rather, they need
to be integrated into a consistent system engineering approach. Specifically, a complex
problem of interest is decomposed into a number of relatively simple tasks, and neural
networks are assigned a subset of the tasks that match their inherent capabilities. It
is important to recognize, however, that we have a long way to go (if ever) before we can
build a computer architecture that mimics the human brain.

Neural networks offer the following useful properties and capabilities:

1. Nonlinearity. An artificial neuron can be linear or nonlinear.A neural network,
made up of an interconnection of nonlinear neurons, is itself nonlinear. Moreover, the
nonlinearity is of a special kind in the sense that it is distributed throughout the net-
work. Nonlinearity is a highly important property, particularly if the underlying physical
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mechanism responsible for generation of the input signal (e.g., speech signal) is inher-
ently nonlinear.

2. Input–Output Mapping. A popular paradigm of learning, called learning with a
teacher, or supervised learning, involves modification of the synaptic weights of a neur-
al network by applying a set of labeled training examples, or task examples. Each example
consists of a unique input signal and a corresponding desired (target) response. The network
is presented with an example picked at random from the set, and the synaptic weights
(free parameters) of the network are modified to minimize the difference between the
desired response and the actual response of the network produced by the input signal in
accordance with an appropriate statistical criterion. The training of the network is re-
peated for many examples in the set, until the network reaches a steady state where there
are no further significant changes in the synaptic weights. The previously applied train-
ing examples may be reapplied during the training session, but in a different order.Thus
the network learns from the examples by constructing an input–output mapping for the
problem at hand. Such an approach brings to mind the study of nonparametric statistical
inference, which is a branch of statistics dealing with model-free estimation, or, from a bi-
ological viewpoint, tabula rasa learning (Geman et al., 1992); the term “nonparametric”
is used here to signify the fact that no prior assumptions are made on a statistical model
for the input data. Consider, for example, a pattern classification task, where the re-
quirement is to assign an input signal representing a physical object or event to one of
several prespecified categories (classes). In a nonparametric approach to this problem,
the requirement is to “estimate” arbitrary decision boundaries in the input signal space
for the pattern-classification task using a set of examples, and to do so without invoking
a probabilistic distribution model. A similar point of view is implicit in the supervised
learning paradigm, which suggests a close analogy between the input–output mapping per-
formed by a neural network and nonparametric statistical inference.

3. Adaptivity. Neural networks have a built-in capability to adapt their synaptic
weights to changes in the surrounding environment. In particular, a neural network
trained to operate in a specific environment can be easily retrained to deal with minor
changes in the operating environmental conditions. Moreover, when it is operating in a
nonstationary environment (i.e., one where statistics change with time), a neural net-
work may be designed to change its synaptic weights in real time. The natural architec-
ture of a neural network for pattern classification, signal processing, and control
applications, coupled with the adaptive capability of the network, makes it a useful tool
in adaptive pattern classification, adaptive signal processing, and adaptive control.As a
general rule, it may be said that the more adaptive we make a system, all the time en-
suring that the system remains stable, the more robust its performance will likely be
when the system is required to operate in a nonstationary environment. It should be
emphasized, however, that adaptivity does not always lead to robustness; indeed, it may
do the very opposite. For example, an adaptive system with short-time constants may
change rapidly and therefore tend to respond to spurious disturbances, causing a dras-
tic degradation in system performance.To realize the full benefits of adaptivity, the prin-
cipal time constants of the system should be long enough for the system to ignore
spurious disturbances, and yet short enough to respond to meaningful changes in the
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environment; the problem described here is referred to as the stability–plasticity dilemma
(Grossberg, 1988).

4. Evidential Response. In the context of pattern classification, a neural network
can be designed to provide information not only about which particular pattern to select,
but also about the confidence in the decision made.This latter information may be used
to reject ambiguous patterns, should they arise, and thereby improve the classification
performance of the network.

5. Contextual Information. Knowledge is represented by the very structure and
activation state of a neural network. Every neuron in the network is potentially affected
by the global activity of all other neurons in the network. Consequently, contextual
information is dealt with naturally by a neural network.

6. Fault Tolerance. A neural network, implemented in hardware form, has the
potential to be inherently fault tolerant, or capable of robust computation, in the
sense that its performance degrades gracefully under adverse operating conditions.
For example, if a neuron or its connecting links are damaged, recall of a stored pat-
tern is impaired in quality. However, due to the distributed nature of information
stored in the network, the damage has to be extensive before the overall response of
the network is degraded seriously. Thus, in principle, a neural network exhibits a
graceful degradation in performance rather than catastrophic failure. There is some
empirical evidence for robust computation, but usually it is uncontrolled. In order to
be assured that the neural network is, in fact, fault tolerant, it may be necessary to take
corrective measures in designing the algorithm used to train the network (Kerlirzin
and Vallet, 1993).

7. VLSI Implementability. The massively parallel nature of a neural network makes
it potentially fast for the computation of certain tasks. This same feature makes a neural
network well suited for implementation using very-large-scale-integrated (VLSI) tech-
nology. One particular beneficial virtue of VLSI is that it provides a means of capturing
truly complex behavior in a highly hierarchical fashion (Mead, 1989).

8. Uniformity of Analysis and Design. Basically, neural networks enjoy universal-
ity as information processors. We say this in the sense that the same notation is used in
all domains involving the application of neural networks.This feature manifests itself in
different ways:

• Neurons, in one form or another, represent an ingredient common to all neural
networks.

• This commonality makes it possible to share theories and learning algorithms in
different applications of neural networks.

• Modular networks can be built through a seamless integration of modules.

9. Neurobiological Analogy. The design of a neural network is motivated by
analogy with the brain, which is living proof that fault-tolerant parallel processing
is not only physically possible, but also fast and powerful. Neurobiologists look to
(artificial) neural networks as a research tool for the interpretation of neurobiolog-
ical phenomena. On the other hand, engineers look to neurobiology for new ideas to
solve problems more complex than those based on conventional hardwired design
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techniques. These two viewpoints are illustrated by the following two respective
examples:

• In Anastasio (1993), linear system models of the vestibulo-ocular reflex (VOR)
are compared to neural network models based on recurrent networks, which are
described in Section 6 and discussed in detail in Chapter 15. The vestibulo-ocular
reflex is part of the oculomotor system.The function of VOR is to maintain visual
(i.e., retinal) image stability by making eye rotations that are opposite to head ro-
tations.The VOR is mediated by premotor neurons in the vestibular nuclei that re-
ceive and process head rotation signals from vestibular sensory neurons and send
the results to the eye muscle motor neurons.The VOR is well suited for modeling
because its input (head rotation) and its output (eye rotation) can be precisely
specified. It is also a relatively simple reflex, and the neurophysiological proper-
ties of its constituent neurons have been well described. Among the three neural
types, the premotor neurons (reflex interneurons) in the vestibular nuclei are the
most complex and therefore most interesting.The VOR has previously been mod-
eled using lumped, linear system descriptors and control theory. These models
were useful in explaining some of the overall properties of the VOR, but gave lit-
tle insight into the properties of its constituent neurons. This situation has been
greatly improved through neural network modeling. Recurrent network models 
of VOR (programmed using an algorithm called real-time recurrent learning,
described in Chapter 15) can reproduce and help explain many of the static, dy-
namic, nonlinear, and distributed aspects of signal processing by the neurons that
mediate the VOR, especially the vestibular nuclei neurons.

• The retina, more than any other part of the brain, is where we begin to put together
the relationships between the outside world represented by a visual sense, its physical
image projected onto an array of receptors, and the first neural images. The retina is
a thin sheet of neural tissue that lines the posterior hemisphere of the eyeball. The
retina’s task is to convert an optical image into a neural image for transmission down
the optic nerve to a multitude of centers for further analysis.This is a complex task,
as evidenced by the synaptic organization of the retina. In all vertebrate retinas, the
transformation from optical to neural image involves three stages (Sterling, 1990):

(i) photo transduction by a layer of receptor neurons;
(ii) transmission of the resulting signals (produced in response to light) by chem-

ical synapses to a layer of bipolar cells;
(iii) transmission of these signals, also by chemical synapses, to output neurons

that are called ganglion cells.

At both synaptic stages (i.e., from receptor to bipolar cells, and from bipolar to
ganglion cells), there are specialized laterally connected neurons called horizontal
cells and amacrine cells, respectively. The task of these neurons is to modify the
transmission across the synaptic layers.There are also centrifugal elements called
inter-plexiform cells; their task is to convey signals from the inner synaptic layer
back to the outer one. Some researchers have built electronic chips that mimic
the structure of the retina. These electronic chips are called neuromorphic inte-
grated circuits, a term coined by Mead (1989). A neuromorphic imaging sensor
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consists of an array of photoreceptors combined with analog circuitry at each 
picture element (pixel). It emulates the retina in that it can adapt locally to changes
in brightness, detect edges, and detect motion. The neurobiological analogy,
exemplified by neuromorphic integrated circuits, is useful in another important
way: It provides a hope and belief, and to a certain extent an existence of proof, that
physical understanding of neurobiological structures could have a productive 
influence on the art of electronics and VLSI technology for the implementation of
neural networks.

With inspiration from neurobiology in mind, it seems appropriate that we take a
brief look at the human brain and its structural levels of organization.2

2 THE HUMAN BRAIN

The human nervous system may be viewed as a three-stage system,as depicted in the block
diagram of Fig.1 (Arbib,1987).Central to the system is the brain, represented by the neural
(nerve) net, which continually receives information, perceives it, and makes appropriate
decisions. Two sets of arrows are shown in the figure. Those pointing from left to right in-
dicate the forward transmission of information-bearing signals through the system. The
arrows pointing from right to left (shown in red) signify the presence of feedback in the sys-
tem.The receptors convert stimuli from the human body or the external environment into
electrical impulses that convey information to the neural net (brain).The effectors convert
electrical impulses generated by the neural net into discernible responses as system outputs.

The struggle to understand the brain has been made easier because of the pio-
neering work of Ramón y Cajál (1911), who introduced the idea of neurons as struc-
tural constituents of the brain. Typically, neurons are five to six orders of magnitude
slower than silicon logic gates; events in a silicon chip happen in the nanosecond range,
whereas neural events happen in the millisecond range. However, the brain makes up
for the relatively slow rate of operation of a neuron by having a truly staggering num-
ber of neurons (nerve cells) with massive interconnections between them. It is estimated
that there are approximately 10 billion neurons in the human cortex, and 60 trillion
synapses or connections (Shepherd and Koch, 1990). The net result is that the brain is
an enormously efficient structure. Specifically, the energetic efficiency of the brain is ap-
proximately 10-16 joules (J) per operation per second, whereas the corresponding value
for the best computers is orders of magnitude larger.

Synapses, or nerve endings, are elementary structural and functional units that me-
diate the interactions between neurons.The most common kind of synapse is a chemical
synapse, which operates as follows: A presynaptic process liberates a transmitter sub-
stance that diffuses across the synaptic junction between neurons and then acts on a post-
synaptic process. Thus a synapse converts a presynaptic electrical signal into a chemical
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signal and then back into a postsynaptic electrical signal (Shepherd and Koch, 1990). In
electrical terminology, such an element is said to be a nonreciprocal two-port device. In
traditional descriptions of neural organization, it is assumed that a synapse is a simple con-
nection that can impose excitation or inhibition, but not both on the receptive neuron.

Earlier we mentioned that plasticity permits the developing nervous system to
adapt to its surrounding environment (Eggermont, 1990; Churchland and Sejnowski,
1992). In an adult brain, plasticity may be accounted for by two mechanisms: the creation
of new synaptic connections between neurons, and the modification of existing synapses.
Axons, the transmission lines, and dendrites, the receptive zones, constitute two types of
cell filaments that are distinguished on morphological grounds; an axon has a smoother
surface, fewer branches, and greater length, whereas a dendrite (so called because of its
resemblance to a tree) has an irregular surface and more branches (Freeman, 1975).
Neurons come in a wide variety of shapes and sizes in different parts of the brain.
Figure 2 illustrates the shape of a pyramidal cell, which is one of the most common types
of cortical neurons. Like many other types of neurons, it receives most of its inputs
through dendritic spines; see the segment of dendrite in the insert in Fig. 2 for detail.
The pyramidal cell can receive 10,000 or more synaptic contacts, and it can project onto
thousands of target cells.

The majority of neurons encode their outputs as a series of brief voltage pulses.
These pulses, commonly known as action potentials, or spikes,3 originate at or close to
the cell body of neurons and then propagate across the individual neurons at constant ve-
locity and amplitude. The reasons for the use of action potentials for communication
among neurons are based on the physics of axons.The axon of a neuron is very long and
thin and is characterized by high electrical resistance and very large capacitance. Both of
these elements are distributed across the axon. The axon may therefore be modeled as
resistance-capacitance (RC) transmission line, hence the common use of “cable equa-
tion” as the terminology for describing signal propagation along an axon.Analysis of this
propagation mechanism reveals that when a voltage is applied at one end of the axon, it
decays exponentially with distance, dropping to an insignificant level by the time it reach-
es the other end. The action potentials provide a way to circumvent this transmission
problem (Anderson, 1995).

In the brain, there are both small-scale and large-scale anatomical organizations, and
different functions take place at lower and higher levels. Figure 3 shows a hierarchy of in-
terwoven levels of organization that has emerged from the extensive work done on the
analysis of local regions in the brain (Shepherd and Koch, 1990; Churchland and Sejnow-
ski, 1992). The synapses represent the most fundamental level, depending on molecules
and ions for their action. At the next levels, we have neural microcircuits, dendritic trees,
and then neurons. A neural microcircuit refers to an assembly of synapses organized into
patterns of connectivity to produce a functional operation of interest. A neural microcir-
cuit may be likened to a silicon chip made up of an assembly of transistors.The smallest size
of microcircuits is measured in micrometers (�m), and their fastest speed of operation is
measured in milliseconds.The neural microcircuits are grouped to form dendritic subunits
within the dendritic trees of individual neurons.The whole neuron, about 100 �m in size,con-
tains several dendritic subunits.At the next level of complexity,we have local circuits (about
1 mm in size) made up of neurons with similar or different properties; these neural
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assemblies perform operations characteristic of a localized region in the brain.They are fol-
lowed by interregional circuits made up of pathways, columns,and topographic maps,which
involve multiple regions located in different parts of the brain.

Topographic maps are organized to respond to incoming sensory information.
These maps are often arranged in sheets, as in the superior colliculus, where the visual,
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auditory, and somatosensory maps are stacked in adjacent layers in such a way that
stimuli from corresponding points in space lie above or below each other. Figure 4
presents a cytoarchitectural map of the cerebral cortex as worked out by Brodmann
(Brodal, 1981). This figure shows clearly that different sensory inputs (motor, so-
matosensory, visual, auditory, etc.) are mapped onto corresponding areas of the cere-
bral cortex in an orderly fashion. At the final level of complexity, the topographic
maps and other interregional circuits mediate specific types of behavior in the central
nervous system.

It is important to recognize that the structural levels of organization described
herein are a unique characteristic of the brain. They are nowhere to be found in a digi-
tal computer, and we are nowhere close to re-creating them with artificial neural net-
works. Nevertheless, we are inching our way toward a hierarchy of computational levels
similar to that described in Fig. 3. The artificial neurons we use to build our neural
networks are truly primitive in comparison with those found in the brain. The neural
networks we are presently able to design are just as primitive compared with the local
circuits and the interregional circuits in the brain. What is really satisfying, however, is
the remarkable progress that we have made on so many fronts. With neurobiological
analogy as the source of inspiration, and the wealth of theoretical and computational
tools that we are bringing together, it is certain that our understanding of artificial
neural networks and their applications will continue to grow in depth as well as
breadth, year after year.
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3 MODELS OF A NEURON

A neuron is an information-processing unit that is fundamental to the operation of a
neural network. The block diagram of Fig. 5 shows the model of a neuron, which forms
the basis for designing a large family of neural networks studied in later chapters. Here,
we identify three basic elements of the neural model:

1. A set of synapses, or connecting links, each of which is characterized by a weight
or strength of its own. Specifically, a signal xj at the input of synapse j connected to
neuron k is multiplied by the synaptic weight wkj. It is important to make a note
of the manner in which the subscripts of the synaptic weight wkj are written. The
first subscript in wkj refers to the neuron in question, and the second subscript
refers to the input end of the synapse to which the weight refers. Unlike the weight
of a synapse in the brain, the synaptic weight of an artificial neuron may lie in a
range that includes negative as well as positive values.

2. An adder for summing the input signals,weighted by the respective synaptic strengths
of the neuron; the operations described here constitute a linear combiner.

3. An activation function for limiting the amplitude of the output of a neuron.The ac-
tivation function is also referred to as a squashing function, in that it squashes
(limits) the permissible amplitude range of the output signal to some finite value.
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Typically, the normalized amplitude range of the output of a neuron is written
as the closed unit interval [0,1], or, alternatively, [-1,1].

The neural model of Fig. 5 also includes an externally applied bias, denoted by bk. The
bias bk has the effect of increasing or lowering the net input of the activation function,
depending on whether it is positive or negative, respectively.

In mathematical terms, we may describe the neuron k depicted in Fig. 5 by writ-
ing the pair of equations:

(1)

and

(2)

where x1, x2, ..., xm are the input signals; wk1, wk2, ..., wkm are the respective synaptic
weights of neuron k; uk (not shown in Fig. 5) is the linear combiner output due to the input
signals; bk is the bias; „(·) is the activation function; and yk is the output signal of the
neuron.The use of bias bk has the effect of applying an affine transformation to the out-
put uk of the linear combiner in the model of Fig. 5, as shown by

(3)

In particular, depending on whether the bias bk is positive or negative, the relationship
between the induced local field, or activation potential, vk of neuron k and the linear
combiner output uk is modified in the manner illustrated in Fig. 6; hereafter, these two
terms are used interchangeably. Note that as a result of this affine transformation, the
graph of vk versus uk no longer passes through the origin.

The bias bk is an external parameter of neuron k. We may account for its presence
as in Eq. (2). Equivalently, we may formulate the combination of Eqs. (1) to (3) as follows:

(4)vk = a
m

j=0
wkjxj

vk = uk + bk

yk = �(uk + bk)

uk = a
m

j=1
wkjxj

Section 3 Models of a Neuron 11

FIGURE 5 Nonlinear model
of a neuron, labeled k.

Σ

wk1

wk2

wkm

x1

x2

xm

w(�)

Activation
function

Output
yk

Summing
junction

Synaptic
weights

Input
signals

Bias
bk

yk

•
•
•

•
•
•



and

(5)

In Eq. (4), we have added a new synapse. Its input is

(6)

and its weight is

(7)

We may therefore reformulate the model of neuron k as shown in Fig. 7. In this figure,
the effect of the bias is accounted for by doing two things: (1) adding a new input signal
fixed at �1, and (2) adding a new synaptic weight equal to the bias bk. Although the
models of Figs. 5 and 7 are different in appearance, they are mathematically equivalent.

wk0 = bk 

x0 = +1

yk = �(vk)
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Types of Activation Function

The activation function, denoted by (v), defines the output of a neuron in terms of
the induced local field v. In what follows, we identify two basic types of activation
functions:

1. Threshold Function. For this type of activation function, described in Fig. 8a,
we have

(8)

In engineering, this form of a threshold function is commonly referred to as a Heaviside
function. Correspondingly, the output of neuron k employing such a threshold function
is expressed as

(9)

where vk is the induced local field of the neuron; that is,

(10)vk = a
m

j = 1
wkjxj + bk

yk = e1 if vk � 0
0 if vk 6 0

�(v) = e1 if v � 0
0 if v 6 0

�

Section 3 Models of a Neuron 13

�2 �1.5 �1 �0.5 0 0.5 1 1.5 2

w(v)

v

(a)

�10 �8 �6 �4 �2 0 2 4 86 10

w(v)

v

(b)

Increasing
a

FIGURE 8 (a) Threshold function.
(b) Sigmoid function for varying
slope parameter a.



In neural computation, such a neuron is referred to as the McCulloch–Pitts model, in
recognition of the pioneering work done by McCulloch and Pitts (1943). In this model,
the output of a neuron takes on the value of 1 if the induced local field of that neuron
is nonnegative, and 0 otherwise.This statement describes the all-or-none property of the
McCulloch–Pitts model.

2. Sigmoid Function.4 The sigmoid function, whose graph is “S”-shaped, is by far
the most common form of activation function used in the construction of neural net-
works. It is defined as a strictly increasing function that exhibits a graceful balance be-
tween linear and nonlinear behavior. An example of the sigmoid function is the logistic
function,5 defined by

(11)

where a is the slope parameter of the sigmoid function. By varying the parameter a, we
obtain sigmoid functions of different slopes, as illustrated in Fig. 8b. In fact, the slope
at the origin equals a/4. In the limit, as the slope parameter approaches infinity, the sig-
moid function becomes simply a threshold function.Whereas a threshold function as-
sumes the value of 0 or 1, a sigmoid function assumes a continuous range of values from
0 to 1. Note also that the sigmoid function is differentiable, whereas the threshold
function is not. (Differentiability is an important feature of neural network theory, as
described in Chapter 4).

The activation functions defined in Eqs. (8) and (11) range from 0 to �1. It is
sometimes desirable to have the activation function range from -1 to �1, in which case,
the activation function is an odd function of the induced local field. Specifically, the
threshold function of Eq. (8) is now defined as

(12)

which is commonly referred to as the signum function. For the corresponding form of a
sigmoid function, we may use the hyperbolic tangent function, defined by

(13)

Allowing an activation function of the sigmoid type to assume negative values as pre-
scribed by Eq. (13) may yield practical benefits over the logistic function of Eq. (11).

Stochastic Model of a Neuron

The neural model described in Fig. 7 is deterministic in that its input–output behav-
ior is precisely defined for all inputs. For some applications of neural networks, it is de-
sirable to base the analysis on a stochastic neural model. In an analytically tractable
approach, the activation function of the McCulloch–Pitts model is given a probabilistic
interpretation. Specifically, a neuron is permitted to reside in only one of two states: �1

�(v) = tanh(v) 

�(v) = • 1 if v 7 0
 0 if v = 0
-1 if v 6 0

�(v) =
1

1 + exp(-av)
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or -1, say. The decision for a neuron to fire (i.e., switch its state from “off” to “on”) is
probabilistic. Let x denote the state of the neuron and P(v) denote the probability of
firing, where v is the induced local field of the neuron. We may then write

(14)

A standard choice for P(v) is the sigmoid-shaped function

(15)

where T is a pseudotemperature used to control the noise level and therefore the un-
certainty in firing (Little, 1974). It is important to realize, however, that T is not the phys-
ical temperature of a neural network, be it a biological or an artificial neural network.
Rather, as already stated, we should think of T merely as a parameter that controls the
thermal fluctuations representing the effects of synaptic noise. Note that when , the
stochastic neuron described by Eqs. (14) and (15) reduces to a noiseless (i.e., determin-
istic) form, namely, the McCulloch–Pitts model.

4 NEURAL NETWORKS VIEWED AS DIRECTED GRAPHS

The block diagram of Fig. 5 or that of Fig. 7 provides a functional description of the var-
ious elements that constitute the model of an artificial neuron.We may simplify the ap-
pearance of the model by using the idea of signal-flow graphs without sacrificing any of
the functional details of the model. Signal-flow graphs, with a well-defined set of rules,
were originally developed by Mason (1953, 1956) for linear networks. The presence of
nonlinearity in the model of a neuron limits the scope of their application to neural net-
works. Nevertheless, signal-flow graphs do provide a neat method for the portrayal of
the flow of signals in a neural network, which we pursue in this section.

A signal-flow graph is a network of directed links (branches) that are intercon-
nected at certain points called nodes. A typical node j has an associated node signal xj.
A typical directed link originates at node j and terminates on node k; it has an associ-
ated transfer function, or transmittance, that specifies the manner in which the signal yk

at node k depends on the signal xj at node j. The flow of signals in the various parts of
the graph is dictated by three basic rules:

Rule 1. A signal flows along a link only in the direction defined by the arrow on
the link.

Two different types of links may be distinguished:

• Synaptic links, whose behavior is governed by a linear input–output relation. Specif-
ically, the node signal xj is multiplied by the synaptic weight wkj to produce the
node signal yk, as illustrated in Fig. 9a.

• Activation links, whose behavior is governed in general by a nonlinear input–output
relation. This form of relationship is illustrated in Fig. 9b, where (·) is the non-
linear activation function.

�

TS 0

P(v) =
1

1 + exp(-v�T)
 

x = e+1 with probability P(v)

-1 with probability 1 - P(v)
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Rule 2. A node signal equals the algebraic sum of all signals entering the pertinent
node via the incoming links.

This second rule is illustrated in Fig. 9c for the case of synaptic convergence, or fan-in.

Rule 3. The signal at a node is transmitted to each outgoing link originating from
that node, with the transmission being entirely independent of the transfer
functions of the outgoing links.

This third rule is illustrated in Fig. 9d for the case of synaptic divergence, or fan-out.
For example, using these rules, we may construct the signal-flow graph of Fig. 10 as

the model of a neuron, corresponding to the block diagram of Fig. 7. The representation
shown in Fig. 10 is clearly simpler in appearance than that of Fig. 7, yet it contains all the
functional details depicted in the latter diagram.Note that in both figures, the input x0 � �1
and the associated synaptic weight wk0 � bk, where bk is the bias applied to neuron k.

Indeed, based on the signal-flow graph of Fig. 10 as the model of a neuron, we may
now offer the following mathematical definition of a neural network:

A neural network is a directed graph consisting of nodes with interconnecting synaptic and
activation links and is characterized by four properties:

1. Each neuron is represented by a set of linear synaptic links, an externally applied bias,
and a possibly nonlinear activation link.The bias is represented by a synaptic link con-
nected to an input fixed at �1.

2. The synaptic links of a neuron weight their respective input signals.
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3. The weighted sum of the input signals defines the induced local field of the neuron in
question.

4. The activation link squashes the induced local field of the neuron to produce an output.

A directed graph, defined in this manner is complete in the sense that it describes
not only the signal flow from neuron to neuron, but also the signal flow inside each neu-
ron.When, however, the focus of attention is restricted to signal flow from neuron to neu-
ron, we may use a reduced form of this graph by omitting the details of signal flow inside
the individual neurons. Such a directed graph is said to be partially complete. It is char-
acterized as follows:

1. Source nodes supply input signals to the graph.
2. Each neuron is represented by a single node called a computation node.
3. The communication links interconnecting the source and computation nodes of the

graph carry no weight; they merely provide directions of signal flow in the graph.

A partially complete directed graph defined in this way is referred to as an architectural
graph, describing the layout of the neural network. It is illustrated in Fig. 11 for the
simple case of a single neuron with m source nodes and a single node fixed at �1 for the
bias. Note that the computation node representing the neuron is shown shaded, and the
source node is shown as a small square.This convention is followed throughout the book.
More elaborate examples of architectural layouts are presented later in Section 6.
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FIGURE 10 Signal-flow graph of a neuron.
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To sum up, we have three graphical representations of a neural network:

• block diagram, providing a functional description of the network;
• architectural graph, describing the network layout;
• signal-flow graph, providing a complete description of signal flow in the network.

5 FEEDBACK

Feedback is said to exist in a dynamic system whenever the output of an element in the
system influences in part the input applied to that particular element, thereby giving
rise to one or more closed paths for the transmission of signals around the system.
Indeed, feedback occurs in almost every part of the nervous system of every animal
(Freeman, 1975). Moreover, it plays a major role in the study of a special class of neural
networks known as recurrent networks. Figure 12 shows the signal-flow graph of a single-
loop feedback system, where the input signal xj(n), internal signal x�j (n), and output
signal yk(n) are functions of the discrete-time variable n. The system is assumed to be
linear, consisting of a forward path and a feedback path that are characterized by
the “operators” A and B, respectively. In particular, the output of the forward channel
determines in part its own output through the feedback channel. From Fig. 12, we readily
note the input–output relationships

(16)
and

(17)

where the square brackets are included to emphasize that A and B act as operators.
Eliminating xj�(n) between Eqs. (16) and (17), we get

(18)

We refer to A/(1 - AB) as the closed-loop operator of the system, and to AB as the
open-loop operator. In general, the open-loop operator is noncommutative in that

.
Consider, for example, the single-loop feedback system shown in Fig. 13a, for which

A is a fixed weight w and B is a unit-delay operator z-1, whose output is delayed with
respect to the input by one time unit. We may then express the closed-loop operator of
the system as

= w(1 - wz-1)-1

A
1 - AB

=
w

1 - wz-1

BA Z AB

yk(n) =
A

1 - AB
[xj(n)]

xj¿(n) = xj(n) + B[yk(n)] 
yk(n) = A[x¿j (n)] 
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Using the binomial expansion for (1 - wz-1)-1, we may rewrite the closed-loop operator
of the system as

(19)

Hence, substituting Eq. (19) into (18), we get

(20)

where again we have included square brackets to emphasize the fact that z-1 is an op-
erator. In particular, from the definition of z-1, we have

(21)

where xj(n - l) is a sample of the input signal delayed by l time units. Accordingly, we
may express the output signal yk(n) as an infinite weighted summation of present and
past samples of the input signal xj(n), as shown by

(22)

We now see clearly that the dynamic behavior of a feedback system represented by the
signal-flow graph of Fig. 13 is controlled by the weight w. In particular, we may distin-
guish two specific cases:

1. , for which the output signal yk(n) is exponentially convergent; that is, the
system is stable. This case is illustrated in Fig. 14a for a positive w.

2. , for which the output signal yk(n) is divergent; that is, the system is unstable.
If the divergence is linear, as in Fig. 14b, and if the divergence is
exponential, as in Fig. 14c.

�w� 7 1�w� = 1
�w� � 1

�w� 6 1

yk(n) = a
q

l = 0
wl + 1xj(n - l) 

z-l[xj(n)] = xj(n - l) 

yk(n) = wa
q

l = 0
wlz-l[xj(n)] 

A
1 - AB

= wa
q

l = 0
wlz-l 
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FIGURE 13 (a) Signal-flow graph of a first-order, infinite-duration impulse response (IIR)
filter. (b) Feedforward approximation of part (a) of the figure, obtained by truncating Eq. (20).
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The issue of stability features prominently in the study of closed-loop feedback systems.
The case of corresponds to a system with infinite memory in the sense that

the output of the system depends on samples of the input extending into the infinite
past. Moreover, the memory is fading in that the influence of a past sample is reduced
exponentially with time n. Suppose that, for some power N, is small enough relative
to unity such that wN is negligible for all practical purposes. In such a situation, we may
approximate the output yk by the finite sum

In a corresponding way, we may use the feedforward signal-flow graph of Fig. 13b as
the approximation for the feedback signal-flow graph of Fig. 13a. In making this ap-
proximation, we speak of the “unfolding” of a feedback system. Note, however, that
the unfolding operation is of practical value only when the feedback system is stable.

= wxj(n) + w2xj(n - 1) + w3xj(n - 2) + ... + wNxj(n - N + 1)

yk(n) L a
N - 1

l = 0
wl + 1xj(n - l)

�w�

�w� 6 1
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The analysis of the dynamic behavior of neural networks involving the applica-
tion of feedback is unfortunately complicated by the fact that the processing units used
for the construction of the network are usually nonlinear. Further consideration of this
important issue is deferred to the latter part of the book.

6 NETWORK ARCHITECTURES

The manner in which the neurons of a neural network are structured is intimately linked
with the learning algorithm used to train the network.We may therefore speak of learn-
ing algorithms (rules) used in the design of neural networks as being structured. The
classification of learning algorithms is considered in Section 8. In this section, we focus
attention on network architectures (structures).

In general, we may identify three fundamentally different classes of network
architectures:

(i) Single-Layer Feedforward Networks

In a layered neural network, the neurons are organized in the form of layers. In the sim-
plest form of a layered network, we have an input layer of source nodes that projects
directly onto an output layer of neurons (computation nodes), but not vice versa. In
other words, this network is strictly of a feedforward type. It is illustrated in Fig. 15 for
the case of four nodes in both the input and output layers. Such a network is called a
single-layer network, with the designation “single-layer” referring to the output layer of
computation nodes (neurons).We do not count the input layer of source nodes because
no computation is performed there.
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(ii) Multilayer Feedforward Networks

The second class of a feedforward neural network distinguishes itself by the presence of
one or more hidden layers, whose computation nodes are correspondingly called hidden
neurons or hidden units; the term “hidden” refers to the fact that this part of the neural
network is not seen directly from either the input or output of the network. The func-
tion of hidden neurons is to intervene between the external input and the network out-
put in some useful manner. By adding one or more hidden layers, the network is enabled
to extract higher-order statistics from its input. In a rather loose sense, the network ac-
quires a global perspective despite its local connectivity, due to the extra set of synap-
tic connections and the extra dimension of neural interactions (Churchland and
Sejnowski, 1992).

The source nodes in the input layer of the network supply respective elements of
the activation pattern (input vector), which constitute the input signals applied to the
neurons (computation nodes) in the second layer (i.e., the first hidden layer). The out-
put signals of the second layer are used as inputs to the third layer, and so on for the rest
of the network. Typically, the neurons in each layer of the network have as their inputs
the output signals of the preceding layer only. The set of output signals of the neurons
in the output (final) layer of the network constitutes the overall response of the net-
work to the activation pattern supplied by the source nodes in the input (first) layer.The
architectural graph in Fig. 16 illustrates the layout of a multilayer feedforward neural net-
work for the case of a single hidden layer. For the sake of brevity, the network in Fig. 16
is referred to as a 10–4–2 network because it has 10 source nodes, 4 hidden neurons, and
2 output neurons. As another example, a feedforward network with m source nodes, h1

neurons in the first hidden layer, h2 neurons in the second hidden layer, and q neurons
in the output layer is referred to as an m–h1–h2–q network.
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The neural network in Fig. 16 is said to be fully connected in the sense that every
node in each layer of the network is connected to every other node in the adjacent for-
ward layer. If, however, some of the communication links (synaptic connections) are
missing from the network, we say that the network is partially connected.

(iii) Recurrent Networks

A recurrent neural network distinguishes itself from a feedforward neural network in that
it has at least one feedback loop. For example, a recurrent network may consist of a sin-
gle layer of neurons with each neuron feeding its output signal back to the inputs of all
the other neurons, as illustrated in the architectural graph in Fig. 17. In the structure de-
picted in this figure, there are no self-feedback loops in the network; self-feedback refers
to a situation where the output of a neuron is fed back into its own input.The recurrent
network illustrated in Fig. 17 also has no hidden neurons.

In Fig. 18 we illustrate another class of recurrent networks with hidden neurons.
The feedback connections shown in Fig. 18 originate from the hidden neurons as well
as from the output neurons.

The presence of feedback loops, be it in the recurrent structure of Fig. 17 or in that
of Fig. 18, has a profound impact on the learning capability of the network and on its per-
formance. Moreover, the feedback loops involve the use of particular branches com-
posed of unit-time delay elements (denoted by z-1), which result in a nonlinear dynamic
behavior, assuming that the neural network contains nonlinear units.
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7 KNOWLEDGE REPRESENTATION

In Section 1, we used the term “knowledge” in the definition of a neural network with-
out an explicit description of what we mean by it. We now take care of this matter by
offering the following generic definition (Fischler and Firschein, 1987):

Knowledge refers to stored information or models used by a person or machine to interpret,
predict, and appropriately respond to the outside world.

The primary characteristics of knowledge representation are twofold: (1) what informa-
tion is actually made explicit; and (2) how the information is physically encoded for sub-
sequent use. By the very nature of it, therefore, knowledge representation is goal directed.
In real-world applications of “intelligent” machines, it can be said that a good solution
depends on a good representation of knowledge (Woods, 1986). So it is with neural
networks. Typically, however, we find that the possible forms of representation from
the inputs to internal network parameters are highly diverse, which tends to make the
development of a satisfactory solution by means of a neural network a real design
challenge.

A major task for a neural network is to learn a model of the world (environment)
in which it is embedded, and to maintain the model sufficiently consistently with the
real world so as to achieve the specified goals of the application of interest. Knowledge
of the world consists of two kinds of information:

1. The known world state, represented by facts about what is and what has been
known; this form of knowledge is referred to as prior information.

2. Observations (measurements) of the world, obtained by means of sensors designed
to probe the environment, in which the neural network is supposed to operate.
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Ordinarily, these observations are inherently noisy, being subject to errors due to
sensor noise and system imperfections. In any event, the observations so obtained
provide the pool of information, from which the examples used to train the neural
network are drawn.

The examples can be labeled or unlabeled. In labeled examples, each example rep-
resenting an input signal is paired with a corresponding desired response (i.e., target out-
put). On the other hand, unlabeled examples consist of different realizations of the input
signal all by itself. In any event, a set of examples, labeled or otherwise, represents knowl-
edge about the environment of interest that a neural network can learn through training.
Note, however, that labeled examples may be expensive to collect, as they require the
availability of a “teacher” to provide a desired response for each labeled example. In con-
trast, unlabeled examples are usually abundant as there is no need for supervision.

A set of input–output pairs, with each pair consisting of an input signal and the cor-
responding desired response, is referred to as a set of training data, or simply training sam-
ple.To illustrate how such a data set can be used,consider, for example, the handwritten-digit
recognition problem. In this problem, the input signal consists of an image with black or
white pixels, with each image representing one of 10 digits that are well separated from the
background.The desired response is defined by the “identity” of the particular digit whose
image is presented to the network as the input signal.Typically, the training sample consists
of a large variety of handwritten digits that are representative of a real-world situation.
Given such a set of examples, the design of a neural network may proceed as follows:

• An appropriate architecture is selected for the neural network, with an input layer
consisting of source nodes equal in number to the pixels of an input image, and an
output layer consisting of 10 neurons (one for each digit).A subset of examples is
then used to train the network by means of a suitable algorithm.This phase of the
network design is called learning.

• The recognition performance of the trained network is tested with data not seen
before. Specifically, an input image is presented to the network, but this time the net-
work is not told the identity of the digit which that particular image represents.The
performance of the network is then assessed by comparing the digit recognition
reported by the network with the actual identity of the digit in question. This sec-
ond phase of the network operation is called testing, and successful performance on
the test patterns is called generalization, a term borrowed from psychology.

Herein lies a fundamental difference between the design of a neural network and
that of its classical information-processing counterpart: the pattern classifier. In the lat-
ter case, we usually proceed by first formulating a mathematical model of environmen-
tal observations, validating the model with real data, and then building the design on the
basis of the model. In contrast, the design of a neural network is based directly on real-
life data, with the data set being permitted to speak for itself. Thus, the neural network not
only provides the implicit model of the environment in which it is embedded, but also
performs the information-processing function of interest.

The examples used to train a neural network may consist of both positive and
negative examples. For instance, in a passive sonar detection problem, positive examples
pertain to input training data that contain the target of interest (e.g., a submarine). Now,
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in a passive sonar environment, the possible presence of marine life in the test data is
known to cause occasional false alarms. To alleviate this problem, negative examples
(e.g., echos from marine life) are included purposely in the training data to teach the net-
work not to confuse marine life with the target.

In a neural network of specified architecture, knowledge representation of the sur-
rounding environment is defined by the values taken on by the free parameters (i.e., synap-
tic weights and biases) of the network.The form of this knowledge representation constitutes
the very design of the neural network, and therefore holds the key to its performance.

Roles of Knowledge Representation

The subject of how knowledge is actually represented inside an artificial network is,
however, very complicated. Nevertheless, there are four rules for knowledge represen-
tation that are of a general commonsense nature, as described next.

Rule 1. Similar inputs (i.e., patterns drawn) from similar classes should usually
produce similar representations inside the network, and should therefore
be classified as belonging to the same class.

There is a plethora of measures for determining the similarity between inputs. A
commonly used measure of similarity is based on the concept of Euclidian distance. To
be specific, let xi denote an m-by-1 vector

all of whose elements are real; the superscript T denotes matrix transposition. The vec-
tor xi defines a point in an m-dimensional space called Euclidean space and denoted by
�m. As illustrated in Fig. 19, the Euclidean distance between a pair of m-by-1 vectors xi

and xj is defined by

(23)

where xik and xjk are the kth elements of the input vectors xi and xj, respectively. Corre-
spondingly, the similarity between the inputs represented by the vectors xi and xj is de-
fined as the Euclidean distance d(xi, xj). The closer the individual elements of the input
vectors xi and xj are to each other, the smaller the Euclidean distance d(xi, xj) is and
therefore the greater the similarity between the vectors xi and xj will be. Rule 1 states that
if the vectors xi and xj are similar, they should be assigned to the same class.

Another measure of similarity is based on the idea of a dot product, or inner prod-
uct, which is also borrowed from matrix algebra. Given a pair of vectors xi and xj of the
same dimension, their inner product is xi

Txj, defined as the projection of the vector xi

onto the vector xj, as illustrated in Fig. 19. We thus write

(24)
= a

m

k = 1
xikxjk

(xi, xj) = xi
Txj 

= c am
k = 1

(xik - xjk)2 d 1�2 
d(xi, xj) = 7xi - xj 7

xi = [xi1, xi2, ..., xim]T
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The inner product (xi, xj) divided by the product is the cosine of the angle sub-
tended between the vectors xi and xj.

The two measures of similarity defined here are indeed intimately related to each
other, as illustrated in Fig. 19. This figure shows clearly that the smaller the Euclidean
distance , and therefore the more similar the vectors xi and xj are, the larger7 xi - xj 7

7xj 77 xi 7
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We may then use Eq. (23) to write

(25)

Equation (25) shows that minimization of the Euclidean distance d(xi, xi) corresponds
to maximization of the inner product (xi, xj) and, therefore, the similarity between the
vectors xi, and xj.

The Euclidean distance and inner product described here are defined in deter-
ministic terms.What if the vectors xi and xj are stochastic, drawn from two different pop-
ulations, or ensembles, of data? To be specific, suppose that the difference between these
two populations lies solely in their mean vectors. Let �i and �j denote the mean values
of the vectors xi and xj, respectively. That is,

(26)

where � is the statistical expectation operator over the ensemble of data vectors xi. The
mean vector �j is similarly defined. For a measure of the distance between these two pop-
ulations, we may use the Mahalanobis distance, denoted by dij. The squared value of this
distance from xi to xj is defined by

(27)

where C�1 is the inverse of the covariance matrix C. It is assumed that the covariance
matrix is the same for both populations, as shown by

(28)
= �[(xj - �j)(xj - �j)

T] 
C = �[(xi - �i)(xi - �i)

T]

dij
2 = (xi - �i)

TC-1(xj - �j)

�i = �[xi]

= 2 - 2xT
i xj 

d2(xi, xj) = (xi - xj)
T(xi - xj)

7xi 7 = 7xj 7 = 1

the inner product xi
Txj will be.

To put this relationship on a formal basis, we first normalize the vectors xi and xj

to have unit length, that is,



Then, for a prescribed C, the smaller the distance dij is, the more similar the vectors
xi and xj will be.

For the special case when xj � xi, �i � �j � �, and C � I, where I is the identity
matrix, the Mahalanobis distance reduces to the Euclidean distance between the sam-
ple vector xi and the mean vector �.

Regardless of whether the data vectors xi and xj are deterministic or stochastic,
Rule 1 addresses the issue of how these two vectors are correlated to each other.
Correlation plays a key role not only in the human brain, but also in signal processing
of various kinds (Chen et al., 2007).

Rule 2. Items to be categorized as separate classes should be given widely
different representations in the network.

According to Rule 1, patterns drawn from a particular class have an algebraic mea-
sure (e.g., Euclidean distance) that is small. On the other hand, patterns drawn from dif-
ferent classes have a large algebraic measure. We may therefore say that Rule 2 is the
dual of Rule 1.

Rule 3. If a particular feature is important, then there should be a large
number of neurons involved in the representation of that item in the
network.

Consider, for example, a radar application involving the detection of a target (e.g.,
aircraft) in the presence of clutter (i.e., radar reflections from undesirable targets such
as buildings, trees, and weather formations).The detection performance of such a radar
system is measured in terms of two probabilities:

• probability of detection, defined as the probability that the system decides that a
target is present when it is;

• probability of false alarm, defined as the probability that the system decides that
a target is present when it is not.

According to the Neyman–Pearson criterion, the probability of detection is maximized, sub-
ject to the constraint that the probability of false alarm does not exceed a prescribed value
(Van Trees, 1968). In such an application, the actual presence of a target in the received sig-
nal represents an important feature of the input. Rule 3, in effect, states that there should
be a large number of neurons involved in making the decision that a target is present
when it actually is. By the same token, there should be a very large number of neurons in-
volved in making the decision that the input consists of clutter only when it actually
does. In both situations, the large number of neurons assures a high degree of accuracy
in decision making and tolerance with respect to faulty neurons.

Rule 4. Prior information and invariances should be built into the design of a
neural network whenever they are available, so as to simplify the network
design by its not having to learn them.

Rule 4 is particularly important because proper adherence to it results in a neural
network with a specialized structure. This is highly desirable for several reasons:

1. Biological visual and auditory networks are known to be very specialized.
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2. A neural network with specialized structure usually has a smaller number of free
parameters available for adjustment than a fully connected network. Consequently,
the specialized network requires a smaller data set for training, learns faster, and
often generalizes better.

3. The rate of information transmission through a specialized network (i.e., the net-
work throughput) is accelerated.

4. The cost of building a specialized network is reduced because of its smaller size,
relative to that of its fully connected counterpart.

Note, however, that the incorporation of prior knowledge into the design of a neural
network restricts application of the network to the particular problem being addressed
by the knowledge of interest.

How to Build Prior Information into Neural Network Design

An important issue that has to be addressed, of course, is how to develop a specialized
structure by building prior information into its design. Unfortunately, there are cur-
rently no well-defined rules for doing this; rather, we have some ad hoc procedures that
are known to yield useful results. In particular, we may use a combination of two tech-
niques:

1. restricting the network architecture, which is achieved through the use of local con-
nections known as receptive fields6;

2. constraining the choice of synaptic weights, which is implemented through the use of
weight-sharing.7

These two techniques, particularly the latter one, have a profitable side benefit: The
number of free parameters in the network could be reduced significantly.

To be specific, consider the partially connected feedforward network of Fig. 20.This
network has a restricted architecture by construction.The top six source nodes constitute
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the receptive field for hidden neuron 1, and so on for the other hidden neurons in the
network. The receptive field of a neuron is defined as that region of the input field over
which the incoming stimuli can influence the output signal produced by the neuron.The
mapping of the receptive field is a powerful and shorthand description of the neuron’s
behavior, and therefore its output.

To satisfy the weight-sharing constraint, we merely have to use the same set of
synaptic weights for each one of the neurons in the hidden layer of the network. Then,
for the example shown in Fig. 20 with six local connections per hidden neuron and a total
of four hidden neurons, we may express the induced local field of hidden neuron j as

(29)

where {wi}6
i � 1 constitutes the same set of weights shared by all four hidden neurons, and

xk is the signal picked up from source node k � i � j - 1. Equation (29) is in the form of
a convolution sum. It is for this reason that a feedforward network using local connec-
tions and weight sharing in the manner described herein is referred to as a convolutional
network (LeCun and Bengio, 2003).

The issue of building prior information into the design of a neural network pertains
to one part of Rule 4; the remaining part of the rule involves the issue of invariances,
which is discussed next.

How to Build Invariances into Neural Network Design

Consider the following physical phenomena:

• When an object of interest rotates, the image of the object as perceived by an ob-
server usually changes in a corresponding way.

• In a coherent radar that provides amplitude as well as phase information about its
surrounding environment, the echo from a moving target is shifted in frequency,
due to the Doppler effect that arises from the radial motion of the target in rela-
tion to the radar.

• The utterance from a person may be spoken in a soft or loud voice, and in a slow
or quick manner.

In order to build an object-recognition system, a radar target-recognition system, and a
speech-recognition system for dealing with these phenomena, respectively, the system
must be capable of coping with a range of transformations of the observed signal.
Accordingly, a primary requirement of pattern recognition is to design a classifier that
is invariant to such transformations. In other words, a class estimate represented by an
output of the classifier must not be affected by transformations of the observed signal
applied to the classifier input.

There are at least three techniques for rendering classifier-type neural networks
invariant to transformations (Barnard and Casasent, 1991):

1. Invariance by Structure. Invariance may be imposed on a neutral network by
structuring its design appropriately. Specifically, synaptic connections between the

vj = a
6

i = 1
wixi + j - 1,  j = 1, 2, 3, 4 
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neurons of the network are created so that transformed versions of the same input are
forced to produce the same output. Consider, for example, the classification of an input
image by a neural network that is required to be independent of in-plane rotations of
the image about its center. We may impose rotational invariance on the network struc-
ture as follows: Let wji be the synaptic weight of neuron j connected to pixel i in the
input image. If the condition wji � wjk is enforced for all pixels i and k that lie at equal
distances from the center of the image, then the neural network is invariant to in-plane
rotations. However, in order to maintain rotational invariance, the synaptic weight wji has
to be duplicated for every pixel of the input image at the same radial distance from the
origin. This points to a shortcoming of invariance by structure: The number of synaptic
connections in the neural network becomes prohibitively large even for images of
moderate size.

2. Invariance by Training. A neural network has a natural ability for pattern clas-
sification. This ability may be exploited directly to obtain transformation invariance as
follows:The network is trained by presenting it with a number of different examples of
the same object, with the examples being chosen to correspond to different transfor-
mations (i.e., different aspect views) of the object. Provided that the number of exam-
ples is sufficiently large, and if the the network is trained to learn to discriminate between
the different aspect views of the object, we may then expect the network to generalize
correctly to transformations other than those shown to it. However, from an engineer-
ing perspective, invariance by training has two disadvantages. First, when a neural net-
work has been trained to recognize an object in an invariant fashion with respect to
known transformations, it is not obvious that this training will also enable the network
to recognize other objects of different classes invariantly. Second, the computational de-
mand imposed on the network may be too severe to cope with, especially if the dimen-
sionality of the feature space is high.

3. Invariant Feature Space. The third technique of creating an invariant classifier-
type neural network is illustrated in Fig. 21. It rests on the premise that it may be pos-
sible to extract features that characterize the essential information content of an input
data set and that are invariant to transformations of the input. If such features are used,
then the network as a classifier is relieved of the burden of having to delineate the
range of transformations of an object with complicated decision boundaries. Indeed,
the only differences that may arise between different instances of the same object
are due to unavoidable factors such as noise and occlusion. The use of an invariant-
feature space offers three distinct advantages. First, the number of features applied to
the network may be reduced to realistic levels. Second, the requirements imposed on
network design are relaxed. Third, invariance for all objects with respect to known
transformations is assured.
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EXAMPLE 1: Autoregressive Models

To illustrate the idea of invariant-feature space, consider the example of a coherent radar system
used for air surveillance, where the targets of interest include aircraft, weather systems, flocks of
migrating birds, and ground objects. The radar echoes from these targets possess different spec-
tral characteristics. Moreover, experimental studies have shown that such radar signals can be
modeled fairly closely as an autoregressive (AR) process of moderate order (Haykin and Deng,
1991). An AR model is a special form of regressive model defined for complex-valued data by

(30)

where {ai}M
i � 1 are the AR coefficients, M is the model order, x(n) is the input, and e(n) is the error

described as white noise. Basically, the AR model of Eq. (30) is represented by a tapped-delay-line
filter as illustrated in Fig. 22a for M � 2. Equivalently, it may be represented by a lattice filter as
shown in Fig. 22b, the coefficients of which are called reflection coefficients. There is a one-to-one
correspondence between the AR coefficients of the model in Fig. 22a and the reflection coefficients
of the model in Fig. 22b.The two models depicted here assume that the input x(n) is complex val-
ued, as in the case of a coherent radar, in which case the AR coefficients and the reflection coeffi-
cients are all complex valued. The asterisk in Eq. (30) and Fig. 22 signifies complex conjugation.
For now, it suffices to say that the coherent radar data may be described by a set of autoregressive
coefficients, or by a corresponding set of reflection coefficients. The latter set of coefficients has

x(n) = a
M

i = 1
a*ix(n - i) + e(n) 
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a computational advantage in that efficient algorithms exist for their computation directly from
the input data. The feature extraction problem, however, is complicated by the fact that moving
objects produce varying Doppler frequencies that depend on their radial velocities measured with
respect to the radar, and that tend to obscure the spectral content of the reflection coefficients as
feature discriminants.To overcome this difficulty, we must build Doppler invariance into the com-
putation of the reflection coefficients.The phase angle of the first reflection coefficient turns out
to be equal to the Doppler frequency of the radar signal. Accordingly, Doppler frequency
normalization is applied to all coefficients so as to remove the mean Doppler shift. This is done
by defining a new set of reflection coefficients {κ�m} related to the set of ordinary reflection coef-
ficients {κm} computed from the input data as:

(31)

where 	 is the phase angle of the first reflection coefficient. The operation described in Eq. (31) is
referred to as heterodyning. A set of Doppler-invariant radar features is thus represented by the nor-
malized reflection coefficients κ�1, κ�2, ..., κ�M , with κ�1 being the only real-valued coefficient in the set.
As mentioned previously, the major categories of radar targets of interest in air surveillance are
weather, birds, aircraft, and ground. The first three targets are moving, whereas the last one is not.
The heterodyned spectral parameters of radar echoes from ground have echoes similar in charac-
teristic to those from aircraft.A ground echo can be discriminated from an aircraft echo because of
its small Doppler shift.Accordingly, the radar classifier includes a postprocessor as shown in Fig. 23,
which operates on the classified results (encoded labels) for the purpose of identifying the ground
class (Haykin and Deng, 1991). Thus, the preprocessor in Fig. 23 takes care of Doppler-shift-
invariant feature extraction at the classifier input, whereas the postprocessor uses the stored Doppler
signature to distinguish between aircraft and ground returns. ■

EXAMPLE 2: Echolocating Bat

A much more fascinating example of knowledge representation in a neural network is found in
the biological sonar system of echolocating bats. Most bats use frequency-modulated (FM, or
“chirp”) signals for the purpose of acoustic imaging; in an FM signal, the instantaneous frequency
of the signal varies with time. Specifically, the bat uses its mouth to broadcast short-duration FM
sonar signals and uses its auditory system as the sonar receiver. Echoes from targets of interest
are represented in the auditory system by the activity of neurons that are selective to different com-
binations of acoustic parameters. There are three principal neural dimensions of the bat’s audi-
tory representation (Simmons et al., 1992):

• Echo frequency, which is encoded by “place” originating in the frequency map of the cochlea;
it is preserved throughout the entire auditory pathway as an orderly arrangement across cer-
tain neurons tuned to different frequencies.

�¿m = �me-jm	  for m = 1, 2, ..., M
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• Echo amplitude, which is encoded by other neurons with different dynamic ranges; it is
manifested both as amplitude tuning and as the number of discharges per stimulus.

• Echo delay, which is encoded through neural computations (based on cross-correlation)
that produce delay-selective responses; it is manifested as target-range tuning.

The two principal characteristics of a target echo for image-forming purposes are spectrum
for target shape and delay for target range.The bat perceives “shape” in terms of the arrival time
of echoes from different reflecting surfaces (glints) within the target. For this to occur, frequency
information in the echo spectrum is converted into estimates of the time structure of the target.
Experiments conducted by Simmons and coworkers on the big brown bat, Eptesicus fuscus, crit-
ically identify this conversion process as consisting of parallel time-domain and frequency-to-
time-domain transforms whose converging outputs create the common delay of range axis of a
perceived image of the target. It appears that the unity of the bat’s perception is due to certain
properties of the transforms themselves, despite the separate ways in which the auditory time
representation of the echo delay and frequency representation of the echo spectrum are initially
performed. Moreover, feature invariances are built into the sonar image-forming process so as to
make it essentially independent of the target’s motion and the bat’s own motion. ■

Some Final Remarks

The issue of knowledge representation in a neural network is directly related to that of
network architecture. Unfortunately, there is no well-developed theory for optimizing
the architecture of a neural network required to interact with an environment of inter-
est, or for evaluating the way in which changes in the network architecture affect the rep-
resentation of knowledge inside the network. Indeed, satisfactory answers to these issues
are usually found through an exhaustive experimental study for a specific application of
interest, with the designer of the neural network becoming an essential part of the struc-
tural learning loop.

8 LEARNING PROCESSES

Just as there are different ways in which we ourselves learn from our own surrounding
environments, so it is with neural networks. In a broad sense, we may categorize the learn-
ing processes through which neural networks function as follows: learning with a teacher
and learning without a teacher. By the same token, the latter form of learning may be sub-
categorized into unsupervised learning and reinforcement learning.These different forms
of learning as performed on neural networks parallel those of human learning.

Learning with a Teacher

Learning with a teacher is also referred to as supervised learning. Figure 24 shows a block
diagram that illustrates this form of learning. In conceptual terms, we may think of the
teacher as having knowledge of the environment, with that knowledge being repre-
sented by a set of input–output examples. The environment is, however, unknown to the
neural network. Suppose now that the teacher and the neural network are both exposed
to a training vector (i.e., example) drawn from the same environment. By virtue of built-in
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knowledge, the teacher is able to provide the neural network with a desired response
for that training vector. Indeed, the desired response represents the “optimum” ac-
tion to be performed by the neural network. The network parameters are adjusted
under the combined influence of the training vector and the error signal. The error
signal is defined as the difference between the desired response and the actual re-
sponse of the network. This adjustment is carried out iteratively in a step-by-step
fashion with the aim of eventually making the neural network emulate the teacher;
the emulation is presumed to be optimum in some statistical sense. In this way,
knowledge of the environment available to the teacher is transferred to the neural
network through training and stored in the form of “fixed” synaptic weights, repre-
senting long-term memory. When this condition is reached, we may then dispense
with the teacher and let the neural network deal with the environment completely
by itself.

The form of supervised learning we have just described is the basis of error-
correction learning. From Fig. 24, we see that the supervised-learning process con-
stitutes a closed-loop feedback system, but the unknown environment is outside the
loop. As a performance measure for the system, we may think in terms of the mean-
square error, or the sum of squared errors over the training sample, defined as a func-
tion of the free parameters (i.e., synaptic weights) of the system. This function may
be visualized as a multidimensional error-performance surface, or simply error surface,
with the free parameters as coordinates. The true error surface is averaged over all
possible input–output examples. Any given operation of the system under the
teacher’s supervision is represented as a point on the error surface. For the system to
improve performance over time and therefore learn from the teacher, the operating
point has to move down successively toward a minimum point of the error surface;
the minimum point may be a local minimum or a global minimum. A supervised
learning system is able to do this with the useful information it has about the gradient
of the error surface corresponding to the current behavior of the system.The gradient
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of the error surface at any point is a vector that points in the direction of steepest de-
scent. In fact, in the case of supervised learning from examples, the system may use an
instantaneous estimate of the gradient vector, with the example indices presumed to be
those of time. The use of such an estimate results in a motion of the operating point
on the error surface that is typically in the form of a “random walk.” Nevertheless,
given an algorithm designed to minimize the cost function, an adequate set of
input–output examples, and enough time in which to do the training, a supervised
learning system is usually able to approximate an unknown input–output mapping
reasonably well.

Learning without a Teacher

In supervised learning, the learning process takes place under the tutelage of a teacher.
However, in the paradigm known as learning without a teacher, as the name implies,
there is no teacher to oversee the learning process.That is to say, there are no labeled ex-
amples of the function to be learned by the network. Under this second paradigm, two
subcategories are identified:

1. Reinforcement Learning

In reinforcement learning, the learning of an input–output mapping is performed through
continued interaction with the environment in order to minimize a scalar index of per-
formance. Figure 25 shows the block diagram of one form of a reinforcement-learning
system built around a critic that converts a primary reinforcement signal received from the
environment into a higher quality reinforcement signal called the heuristic reinforcement
signal, both of which are scalar inputs (Barto et al., 1983).The system is designed to learn
under delayed reinforcement, which means that the system observes a temporal sequence
of stimuli also received from the environment, which eventually result in the generation
of the heuristic reinforcement signal.

Critic

State (input)
vector

Learning
system

Heuristic
reinforcement

signal

Primary
reinforcement

signal

Environment

Actions

FIGURE 25 Block diagram of
reinforcement learning; the learning
system and the environment are
both inside the feedback loop.
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The goal of reinforcement learning is to minimize a cost-to-go function, defined as the
expectation of the cumulative cost of actions taken over a sequence of steps instead of sim-
ply the immediate cost. It may turn out that certain actions taken earlier in that sequence
of time steps are in fact the best determinants of overall system behavior. The function
of the learning system is to discover these actions and feed them back to the environment.

Delayed-reinforcement learning is difficult to perform for two basic reasons:

• There is no teacher to provide a desired response at each step of the learning
process.

• The delay incurred in the generation of the primary reinforcement signal implies
that the learning machine must solve a temporal credit assignment problem. By this
we mean that the learning machine must be able to assign credit and blame indi-
vidually to each action in the sequence of time steps that led to the final outcome,
while the primary reinforcement may only evaluate the outcome.

Notwithstanding these difficulties, delayed-reinforcement learning is appealing. It pro-
vides the basis for the learning system to interact with its environment, thereby devel-
oping the ability to learn to perform a prescribed task solely on the basis of the outcomes
of its experience that result from the interaction.

2. Unsupervised Learning

In unsupervised, or self-organized, learning, there is no external teacher or critic to
oversee the learning process, as indicated in Fig. 26. Rather, provision is made for a
task-independent measure of the quality of representation that the network is required
to learn, and the free parameters of the network are optimized with respect to that mea-
sure. For a specific task-independent measure, once the network has become tuned to
the statistical regularities of the input data, the network develops the ability to form in-
ternal representations for encoding features of the input and thereby to create new
classes automatically (Becker, 1991).

To perform unsupervised learning, we may use a competitive-learning rule. For
example, we may use a neural network that consists of two layers—an input layer and
a competitive layer. The input layer receives the available data. The competitive layer
consists of neurons that compete with each other (in accordance with a learning rule)
for the “opportunity” to respond to features contained in the input data. In its simplest
form, the network operates in accordance with a “winner-takes-all” strategy. In such a
strategy, the neuron with the greatest total input “wins” the competition and turns on;
all the other neurons in the network then switch off.

Vector describing
state of the

environment
Learning

systemEnvironment

FIGURE 26 Block diagram 
of unsupervised learning.
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9 LEARNING TASKS

In the previous section, we discussed different learning paradigms. In this section, we de-
scribe some basic learning tasks.The choice of a particular learning rule, is of course, in-
fluenced by the learning task, the diverse nature of which is testimony to the universality
of neural networks.

Pattern Association

An associative memory is a brainlike distributed memory that learns by association. As-
sociation has been known to be a prominent feature of human memory since the time
of Aristotle, and all models of cognition use association in one form or another as the
basic operation (Anderson, 1995).

Association takes one of two forms: autoassociation and heteroassociation. In au-
toassociation, a neural network is required to store a set of patterns (vectors) by re-
peatedly presenting them to the network. The network is subsequently presented
with a partial description or distorted (noisy) version of an original pattern stored in
it, and the task is to retrieve (recall) that particular pattern. Heteroassociation dif-
fers from autoassociation in that an arbitrary set of input patterns is paired with an-
other arbitrary set of output patterns. Autoassociation involves the use of
unsupervised learning, whereas the type of learning involved in heteroassociation is
supervised.

Let xk denote a key pattern (vector) applied to an associative memory and yk de-
note a memorized pattern (vector). The pattern association performed by the network
is described by

(32)

where q is the number of patterns stored in the network.The key pattern xk acts as a stim-
ulus that not only determines the storage location of memorized pattern yk, but also
holds the key for its retrieval.

In an autoassociative memory, yk � xk, so the input and output (data) spaces of the
network have the same dimensionality. In a heteroassociative memory, ; hence,
the dimensionality of the output space in this second case may or may not equal the di-
mensionality of the input space.

There are two phases involved in the operation of an associative memory:

• storage phase, which refers to the training of the network in accordance with Eq.
(32);

• recall phase, which involves the retrieval of a memorized pattern in response
to the presentation of a noisy or distorted version of a key pattern to the net-
work.

Let the stimulus (input) x represent a noisy or distorted version of a key pattern xj.This
stimulus produces a response (output) y, as indicated in Fig. 27. For perfect recall, we
should find that y � yj, where yj is the memorized pattern associated with the key pattern
xj.When for x � xj, the associative memory is said to have made an error in recall.y Z yj

yk Z xk

xk S yk,  k = 1, 2, ..., q
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The number of patterns q stored in an associative memory provides a direct
measure of the storage capacity of the network. In designing an associative memory,
the challenge is to make the storage capacity q (expressed as a percentage of the total
number N of neurons used to construct the network) as large as possible, yet insist that
a large fraction of the memorized patterns is recalled correctly.

Pattern Recognition

Humans are good at pattern recognition. We receive data from the world around us
via our senses and are able to recognize the source of the data. We are often able to
do so almost immediately and with practically no effort. For example, we can recog-
nize the familiar face of a person even though that person has aged since our last en-
counter, identify a familiar person by his or her voice on the telephone despite a bad
connection, and distinguish a boiled egg that is good from a bad one by smelling it.
Humans perform pattern recognition through a learning process; so it is with neural
networks.

Pattern recognition is formally defined as the process whereby a received pat-
tern/signal is assigned to one of a prescribed number of classes. A neural network per-
forms pattern recognition by first undergoing a training session during which the
network is repeatedly presented with a set of input patterns along with the category
to which each particular pattern belongs. Later, the network is presented with a new
pattern that has not been seen before, but which belongs to the same population of pat-
terns used to train the network. The network is able to identify the class of that par-
ticular pattern because of the information it has extracted from the training data.
Pattern recognition performed by a neural network is statistical in nature, with the
patterns being represented by points in a multidimensional decision space. The deci-
sion space is divided into regions, each one of which is associated with a class. The
decision boundaries are determined by the training process.The construction of these
boundaries is made statistical by the inherent variability that exists within and
between classes.

In generic terms, pattern-recognition machines using neural networks may take
one of two forms:

• The machine is split into two parts, an unsupervised network for feature extraction
and a supervised network for classification, as shown in the hybridized system of 
Fig. 28a. Such a method follows the traditional approach to statistical pattern
recognition (Fukunaga, 1990; Duda et al., 2001; Theodoridis and Koutroumbas,
2003). In conceptual terms, a pattern is represented by a set of m observables,
which may be viewed as a point x in an m-dimensional observation (data) space.

Pattern
associator

Input
vector

x

Output
vector

y

FIGURE 27 Input–output relation
of pattern associator.
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Feature extraction is described by a transformation that maps the point x into
an intermediate point y in a q-dimensional feature space with q < m, as indicated
in Fig. 28b. This transformation may be viewed as one of dimensionality
reduction (i.e., data compression), the use of which is justified on the grounds
that it simplifies the task of classification. The classification is itself described
as a transformation that maps the intermediate point y into one of the classes
in an r-dimensional decision space, where r is the number of classes to be dis-
tinguished.

• The machine is designed as a feedforward network using a supervised learning al-
gorithm. In this second approach, the task of feature extraction is performed by the
computational units in the hidden layer(s) of the network.

Function Approximation

The third learning task of interest is that of function approximation. Consider a nonlinear
input–output mapping described by the functional relationship

(33)

where the vector x is the input and the vector d is the output. The vector-
valued function f(·) is assumed to be unknown. To make up for the lack of knowledge
about the function f(·), we are given the set of labeled examples:

(34)t = {(xi, di)}N
i = 1

d = f(x)

FIGURE 28 Illustration of the classical approach to pattern classification.
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The requirement is to design a neural network that approximates the unknown function
f(·) such that the function F(·) describing the input–output mapping actually realized by
the network, is close enough to f(·) in a Euclidean sense over all inputs, as shown by

(35)

where is a small positive number. Provided that the size N of the training sample is
large enough and the network is equipped with an adequate number of free parameters,
then the approximation error can be made small enough for the task.

The approximation problem described here is a perfect candidate for supervised
learning, with xi playing the role of input vector and di serving the role of desired re-
sponse. We may turn this issue around and view supervised learning as an approxima-
tion problem.

The ability of a neural network to approximate an unknown input–output
mapping may be exploited in two important ways:

(i) System identification. Let Eq. (33) describe the input–output relation of an un-
known memoryless multiple input–multiple output (MIMO) system; by a “memo-
ryless” system, we mean a system that is time invariant. We may then use the set
of labeled examples in Eq. (34) to train a neural network as a model of the system.
Let the vector yi denote the actual output of the neural network produced in re-
sponse to an input vector xi.The difference between di (associated with xi) and the
network output yi provides the error signal vector ei, as depicted in Fig. 29. This
error signal is, in turn, used to adjust the free parameters of the network to mini-
mize the squared difference between the outputs of the unknown system and the
neural network in a statistical sense, and is computed over the entire training
sample

(ii) Inverse modeling. Suppose next we are given a known memoryless MIMO system
whose input–output relation is described by Eq. (33). The requirement in this
case is to construct an inverse model that produces the vector x in response to
the vector d. The inverse system may thus be described by

(36)x = f-1(d) 

t.

�

t�

7F(x) - f(x) 7 6 � for all x

FIGURE 29 Block diagram of
system identification: The neural
network, doing the identification, is
part of the feedback loop.
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where the vector-valued function f-1(·) denotes the inverse of f(·). Note, however,
that f-1(·) is not the reciprocal of f(·); rather, the use of superscript -1 is merely
a flag to indicate an inverse. In many situations encountered in practice, the
vector-valued function f(·) is much too complex and inhibits a straightforward
formulation of the inverse function f-1(·). Given the set of labeled examples in
Eq. (34), we may construct a neural network approximation of f-1(·) by using the
scheme shown in Fig. 30. In the situation described here, the roles of xi and di are
interchanged: The vector di is used as the input, and xi is treated as the desired
response. Let the error signal vector ei denote the difference between xi and the
actual output yi of the neural network produced in response to di.As with the sys-
tem identification problem, this error signal vector is used to adjust the free pa-
rameters of the neural network to minimize the squared difference between the
outputs of the unknown inverse system and the neural network in a statistical
sense, and is computed over the complete training set . Typically, inverse mod-
eling is a more difficult learning task than system identification, as there may
not be a unique solution for it.

Control

The control of a plant is another learning task that is well suited for neural networks; by
a “plant” we mean a process or critical part of a system that is to be maintained in a con-
trolled condition. The relevance of learning to control should not be surprising because,
after all, the human brain is a computer (i.e., information processor), the outputs of which
as a whole system are actions. In the context of control, the brain is living proof that it is
possible to build a generalized controller that takes full advantage of parallel distributed
hardware, can control many thousands of actuators (muscle fibers) in parallel, can handle
nonlinearity and noise, and can optimize over a long-range planning horizon (Werbos,
1992).

Consider the feedback control system shown in Fig. 31. The system involves the
use of unity feedback around a plant to be controlled; that is, the plant output is fed
back directly to the input. Thus, the plant output y is subtracted from a reference signal
d supplied from an external source. The error signal e so produced is applied to a neural
controller for the purpose of adjusting its free parameters.The primary objective of the
controller is to supply appropriate inputs to the plant to make its output y track the

t

FIGURE 30 Block diagram of inverse system modeling. The neural network, acting
as the inverse model, is part of the feedback loop.
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reference signal d. In other words, the controller has to invert the plant’s input–output
behavior.

We note that in Fig. 31, the error signal e has to propagate through the neural con-
troller before reaching the plant. Consequently, to perform adjustments on the free pa-
rameters of the plant in accordance with an error-correction learning algorithm, we need
to know the Jacobian, made up of a matrix of partial derivatives as shown by

(37)

where yk is an element of the plant output y and uj is an element of the plant input u.
Unfortunately, the partial derivatives for the various k and j depend on the oper-
ating point of the plant and are therefore not known.We may use one of two approaches
to account for them:

(i) Indirect learning. Using actual input–output measurements on the plant, we first
construct a neural model to produce a copy of it. This model is, in turn, used to
provide an estimate of the Jacobian J. The partial derivatives constituting this Ja-
cobian are subsequently used in the error-correction learning algorithm for com-
puting the adjustments to the free parameters of the neural controller (Nguyen and
Widrow, 1989; Suykens et al., 1996; Widrow and Walach, 1996).

(ii) Direct learning. The signs of the partial derivatives are generally known
and usually remain constant over the dynamic range of the plant. This suggests
that we may approximate these partial derivatives by their individual signs.Their
absolute values are given a distributed representation in the free parameters of
the neural controller (Saerens and Soquet, 1991; Schiffman and Geffers, 1993).
The neural controller is thereby enabled to learn the adjustments to its free pa-
rameters directly from the plant.

Beamforming

Beamforming is used to distinguish between the spatial properties of a target signal and
background noise. The device used to do the beamforming is called a beamformer.

The task of beamforming is compatible, for example, with feature mapping in the
cortical layers of auditory systems of echolocating bats (Suga, 1990a; Simmons et al.,
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1992).The echolocating bat illuminates the surrounding environment by broadcasting short-
duration frequency-modulated (FM) sonar signals and then uses its auditory system (in-
cluding a pair of ears) to focus attention on its prey (e.g., flying insect).The ears provide the
bat with a beamforming capability that is exploited by the auditory system to produce
attentional selectivity.

Beamforming is commonly used in radar and sonar systems where the primary
task is to detect and track a target of interest in the combined presence of receiver
noise and interfering signals (e.g., jammers). This task is complicated by two factors:

• the target signal originates from an unknown direction, and
• there is no prior information available on the interfering signals.

One way of coping with situations of this kind is to use a generalized sidelobe canceller
(GSLC), the block diagram of which is shown in Fig. 32.The system consists of the fol-
lowing components (Griffiths and Jim, 1982; Haykin, 2002):

• An array of antenna elements, which provides a means of sampling the observation-
space signal at discrete points in space.

• A linear combiner defined by a set of fixed weights the output of which
performs the role of a desired response. This linear combiner acts like a “spa-
tial filter,” characterized by a radiation pattern (i.e., a polar plot of the ampli-
tude of the antenna output versus the incidence angle of an incoming signal).
The mainlobe of this radiation pattern is pointed along a prescribed direction,
for which the GSLC is constrained to produce a distortionless response. The
output of the linear combiner, denoted by d(n), provides a desired response for
the beamformer.

• A signal-blocking matrix Ca, the function of which is to cancel interference that
leaks through the sidelobes of the radiation pattern of the spatial filter represent-
ing the linear combiner.

{wi}i = 1
m ,

Signal-
blocking
matrix

Ca

Neural
network

Desired
response

d(n)

u1(n)

u2(n)

um(n)

Error
signal
e(n)

Output
y(n)

x(n)

Σ

Σ

w2

w1

wm

•
•
•

•
•
•

•
•
• �

�

Linear combiner

Inputs

FIGURE 32 Block diagram of generalized sidelobe canceller.



Section 10 Concluding Remarks 45

• A neural network with adjustable parameters, which is designed to accommodate
statistical variations in the interfering signals.

The adjustments to the free parameters of the neural network are performed by an
error-correcting learning algorithm that operates on the error signal e(n), defined as the
difference between the linear combiner output d(n) and the actual output y(n) of the
neural network.Thus the GSLC operates under the supervision of the linear combiner
that assumes the role of a “teacher.” As with ordinary supervised learning, notice that
the linear combiner is outside the feedback loop acting on the neural network.A beam-
former that uses a neural network for learning is called a neuro-beamformer. This class
of learning machines comes under the general heading of attentional neurocomputers
(Hecht-Nielsen, 1990).

10 CONCLUDING REMARKS

In the material covered in this introductory chapter, we have focused attention on neur-
al networks, the study of which is motivated by the human brain. The one important
property of neural networks that stands out is that of learning, which is categorized as
follows:

(i) supervised learning, which requires the availability of a target or desired response
for the realization of a specific input–output mapping by minimizing a cost func-
tion of interest;

(ii) unsupervised learning, the implementation of which relies on the provision of a
task-independent measure of the quality of representation that the network is re-
quired to learn in a self-organized manner;

(iii) reinforcement learning, in which input–output mapping is performed through the
continued interaction of a learning system with its environment so as to minimize
a scalar index of performance.

Supervised learning relies on the availability of a training sample of labeled
examples, with each example consisting of an input signal (stimulus) and the corre-
sponding desired (target) response. In practice, we find that the collection of labeled
examples is a time-consuming and expensive task, especially when we are dealing with
large-scale learning problems; typically, we therefore find that labeled examples are in
short supply. On the other hand, unsupervised learning relies solely on unlabeled ex-
amples, consisting simply of a set of input signals or stimuli, for which there is usually a
plentiful supply. In light of these realities, there is a great deal of interest in another cat-
egory of learning: semisupervised learning, which employs a training sample that consists
of labeled as well as unlabeled examples.The challenge in semisupervised learning, dis-
cussed in a subsequent chapter, is to design a learning system that scales reasonably well
for its implementation to be practically feasible when dealing with large-scale pattern-
classification problems.

Reinforcement learning lies between supervised learning and unsupervised
learning. It operates through continuing interactions between a learning system
(agent) and the environment.The learning system performs an action and learns from
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the response of the environment to that action. In effect, the role of the teacher in
supervised learning is replaced by a critic, for example, that is integrated into the
learning machinery.

NOTES AND REFERENCES

1. This definition of a neural network is adapted from Aleksander and Morton (1990).
2. For a readable account of computational aspects of the brain, see Churchland and Sejnowski

(1992). For more detailed descriptions, see Kandel et al. (1991), Shepherd (1990), Kuffler
et al. (1984), and Freeman (1975).

3. For detailed treatment of spikes and spiking neurons, see Rieke et al. (1997). For a
biophysical perspective of computation and information-processing capability of single
neurons, see Koch (1999).

4. For a thorough account of sigmoid functions and related issues, see Mennon et al.
(1996).

5. The logistic function, or more precisely, the logistic distribution function, derives its name
from a transcendental “law of logistic growth” that has a huge literature. Measured in
appropriate units, all growth processes are supposed to be represented by the logistic
distribution function

where t represents time, and and are constants.
6. According to Kuffler et al. (1984), the term “receptive field” was coined originally by

Sherrington (1906) and reintroduced by Hartline (1940). In the context of a visual system,
the receptive field of a neuron refers to the restricted area on the retinal surface, which
influences the discharges of that neuron due to light.

7. The weight-sharing technique was originally described in Rumelhart et al. (1986b).
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ORGANIZATION OF THE CHAPTER

The perceptron occupies a special place in the historical development of neural net-
works: It was the first algorithmically described neural network. Its invention by
Rosenblatt, a psychologist, inspired engineers, physicists, and mathematicians alike to
devote their research  effort to different aspects of neural networks in the 1960s and
the 1970s. Moreover, it is truly remarkable to find that the perceptron (in its basic form
as described in this chapter) is as valid today as it was in 1958 when Rosenblatt’s paper
on the perceptron was first published.

The chapter is organized as follows:

1. Section 1.1 expands on the formative years of neural networks, going back to the
pioneering work of McCulloch and Pitts in 1943.

2. Section 1.2 describes Rosenblatt’s perceptron in its most basic form. It is followed by
Section 1.3 on the perceptron convergence theorem. This theorem proves conver-
gence of the perceptron as a linearly separable pattern classifier in a finite number
time-steps.

3. Section 1.4 establishes the relationship between the perceptron and the Bayes clas-
sifier for a Gaussian environment.

4. The experiment presented in Section 1.5 demonstrates the pattern-classification
capability of the perceptron.

5. Section 1.6 generalizes the discussion by introducing the perceptron cost function,
paving the way for deriving the batch version of the perceptron convergence
algorithm.

Section 1.7 provides a summary and discussion that conclude the chapter.

1.1 INTRODUCTION

In the formative years of neural networks (1943–1958), several researchers stand out
for their pioneering contributions:

• McCulloch and Pitts (1943) for introducing the idea of neural networks as com-
puting machines.
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• Hebb (1949) for postulating the first rule for self-organized learning.
• Rosenblatt (1958) for proposing the perceptron as the first model for learning

with a teacher (i.e., supervised learning).

The idea of Hebbian learning will be discussed at some length in Chapter 8. In this
chapter, we discuss Rosenblatt’s perceptron.

The perceptron is the simplest form of a neural network used for the classifi-
cation of patterns said to be linearly separable (i.e., patterns that lie on opposite
sides of a hyperplane). Basically, it consists of a single neuron with adjustable synap-
tic weights and bias. The algorithm used to adjust the free parameters of this neural
network first appeared in a learning procedure developed by Rosenblatt (1958, 1962)
for his perceptron brain model.1 Indeed, Rosenblatt proved that if the patterns (vec-
tors) used to train the perceptron are drawn from two linearly separable classes,
then the perceptron algorithm converges and positions the decision surface in the
form of a hyperplane between the two classes. The proof of convergence of the al-
gorithm is known as the perceptron convergence theorem.

The perceptron built around a single neuron is limited to performing pattern
classification with only two classes (hypotheses). By expanding the output (compu-
tation) layer of the perceptron to include more than one neuron, we may corre-
spondingly perform classification with more than two classes. However, the classes
have to be linearly separable for the perceptron to work properly. The important
point is that insofar as the basic theory of the perceptron as a pattern classifier is con-
cerned, we need consider only the case of a single neuron. The extension of the the-
ory to the case of more than one neuron is trivial.

1.2 PERCEPTRON

Rosenblatt’s perceptron is built around a nonlinear neuron, namely, the McCulloch–Pitts
model of a neuron. From the introductory chapter we recall that such a neural modeling
consists of a linear combiner followed by a hard limiter (performing the signum func-
tion), as depicted in Fig. 1.1. The summing node of the neural model computes a lin-
ear combination of the inputs applied to its synapses, as well as incorporates an externally
applied bias. The resulting sum, that is, the induced local field, is applied to a hard
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limiter. Accordingly, the neuron produces an output equal to �1 if the hard limiter
input is positive, and -1 if it is negative.

In the signal-flow graph model of Fig. 1.1, the synaptic weights of the perceptron
are denoted by w1, w2, ..., wm. Correspondingly, the inputs applied to the perceptron are
denoted by x1, x2, ..., xm. The externally applied bias is denoted by b. From the model,
we find that the hard limiter input, or induced local field, of the neuron is

(1.1)

The goal of the perceptron is to correctly classify the set of externally applied stimuli x1,
x2, ..., xm into one of two classes,c1 or c2. The decision rule for the classification is to as-
sign the point represented by the inputs x1, x2, ..., xm to class c1 if the perceptron output
y is +1 and to class c2 if it is -1.

To develop insight into the behavior of a pattern classifier, it is customary to plot
a map of the decision regions in the m-dimensional signal space spanned by the m input
variables x1, x2, ..., xm. In the simplest form of the perceptron, there are two decision re-
gions separated by a hyperplane, which is defined by

v = a
m

i = 1
wixi + b
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FIGURE 1.2 Illustration of the
hyperplane (in this example, a
straight line) as decision boundary
for a two-dimensional, two-class
pattern-classification problem.

(1.2)

This is illustrated in Fig. 1.2 for the case of two input variables x1 and x2, for which the
decision boundary takes the form of a straight line. A point (x1, x2) that lies above the
boundary line is assigned to class c1, and a point (x1, x2) that lies below the boundary line
is assigned to class c2. Note also that the effect of the bias b is merely to shift the deci-
sion boundary away from the origin.

The synaptic weights w1, w2, ..., wm of the perceptron can be adapted on an iteration-
by-iteration basis. For the adaptation, we may use an error-correction rule known as the
perceptron convergence algorithm, discussed next.

a
m

i = 1
wixi + b = 0



1.3 THE PERCEPTRON CONVERGENCE THEOREM

To derive the error-correction learning algorithm for the perceptron, we find it more
convenient to work with the modified signal-flow graph model in Fig. 1.3. In this second
model, which is equivalent to that of Fig. 1.1, the bias b(n) is treated as a synaptic weight
driven by a fixed input equal to �1. We may thus define the (m � 1)-by-1 input vector

where n denotes the time-step in applying the algorithm. Correspondingly, we define
the (m + 1)-by-1 weight vector as

Accordingly, the linear combiner output is written in the compact form

(1.3)

where, in the first line, w0(n), corresponding to i � 0, represents the bias b. For fixed n,
the equation wTx = 0, plotted in an m-dimensional space (and for some prescribed bias)
with coordinates x1, x2, ..., xm, defines a hyperplane as the decision surface between two
different classes of inputs.

For the perceptron to function properly, the two classes c1 and c2 must be linearly
separable. This, in turn, means that the patterns to be classified must be sufficiently sep-
arated from each other to ensure that the decision surface consists of a hyperplane.This
requirement is illustrated in Fig. 1.4 for the case of a two-dimensional perceptron. In Fig.
1.4a, the two classes c1 and c2 are sufficiently separated from each other for us to draw
a hyperplane (in this case, a striaght line) as the decision boundary. If, however, the two
classes c1 and c2 are allowed to move too close to each other, as in Fig. 1.4b, they be-
come nonlinearly separable, a situation that is beyond the computing capability of the
perceptron.

Suppose then that the input variables of the perceptron originate from two lin-
early separable classes. Let h1 be the subspace of training vectors x1(1), x1(2), ... that be-
long to class c1, and let h2 be the subspace of training vectors x2(1), x2(2), ... that belong
to class c2. The union of h1 andh2 is the complete space denoted by h. Given the sets

= wT(n)x(n)

v(n) = a
m

i = 0
wi(n)xi(n)

w(n) = [b, w1(n), w2(n), ..., wm(n)]T

x(n) = [+1, x1(n), x2(n), ..., xm(n)]T
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of vectors h1 andh2 to train the classifier, the training process involves the adjustment
of the weight vector w in such a way that the two classes c1 and c2 are linearly separa-
ble. That is, there exists a weight vector w such that we may state

(1.4)

In the second line of Eq. (1.4), we have arbitrarily chosen to say that the input vector x
belongs to class c2 if wTx � 0. Given the subsets of training vectors h1 andh2, the train-
ing problem for the perceptron is then to find a weight vector w such that the two in-
equalities of Eq. (1.4) are satisfied.

The algorithm for adapting the weight vector of the elementary perceptron may
now be formulated as follows:

1. If the nth member of the training set, x(n), is correctly classified by the weight
vector w(n) computed at the nth iteration of the algorithm, no correction is made to the
weight vector of the perceptron in accordance with the rule:

(1.5)

2. Otherwise, the weight vector of the perceptron is updated in accordance with
the rule

(1.6)

where the learning-rate parameter η(n) controls the adjustment applied to the weight vec-
tor at iteration n.

If �(n) � � > 0, where � is a constant independent of the iteration number n, then
we have a fixed-increment adaptation rule for the perceptron.

In the sequel, we first prove the convergence of a fixed-increment adaptation rule
for which η � 1. Clearly, the value of η is unimportant, so long as it is positive. A value

w(n + 1) = w(n) + �(n)x(n)   if wT(n)x(n) � 0 and x(n) belongs to class c1

w(n + 1) = w(n) - �(n)x(n)   if wT(n)x(n) 7 0 and x(n) belongs to class c2

w(n + 1) = w(n)   if wT(n)x(n) � 0 and x(n) belongs to class c2

w(n + 1) = w(n)   if wT(n)x(n) 7 0 and x(n) belongs to class c1

wTx � 0 for every input vector x belonging to class c2

wTx 7 0 for every input vector x belonging to class c1
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of merely scales the pattern vectors without affecting their separability.The case
of a variable η(n) is considered later.

Proof of the perceptron convergence algorithm2 is presented for the initial condi-
tion w(0) � 0. Suppose that wT(n)x(n) < 0 for n � 1, 2, ..., and the input vector x(n)
belongs to the subset h1. That is, the perceptron incorrectly classifies the vectors x(1),
x(2), ..., since the first condition of Eq. (1.4) is violated. Then, with the constant �(n)
� 1, we may use the second line of Eq. (1.6) to write

(1.7)

Given the initial condition w(0) = 0, we may iteratively solve this equation for w(n + 1),
obtaining the result

(1.8)

Since the classes and are assumed to be linearly separable, there exists a solution
wo for which wTx(n) > 0 for the vectors x(1), ..., x(n) belonging to the subset h1. For a
fixed solution wo, we may then define a positive number � as

(1.9)

Hence, multiplying both sides of Eq. (1.8) by the row vector wT
o, we get

Accordingly, in light of the definition given in Eq. (1.9), we have

(1.10)

Next we make use of an inequality known as the Cauchy–Schwarz inequality. Given
two vectors w0 and w(n + 1), the Cauchy–Schwarz inequality states that

(1.11)

where denotes the Euclidean norm of the enclosed argument vector, and the inner@ @ � @ @ @ @wo @ @ 2 @ @w(n + 1) @ @ 2 � [wo
Tw(n + 1)]2

wTow(n + 1) � n�

wTow(n + 1) = wTox(1) + wTox(2) + p + wTox(n)

� = min
x(n)�h1

wTox(n)

c2c1

w(n + 1) = x(1) + x(2) + p + x(n)

w(n + 1) = w(n) + x(n)  for x(n) belonging to class c1

� Z 1
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product wT
ow(n + 1) is a scalar quantity.We now note from Eq. (1.10) that [wT

ow(n � 1)]2

is equal to or greater than n2�2. From Eq. (1.11) we note that is equal
to or greater than [wT

ow(n + 1)]2. It follows therefore that

or, equivalently,

(1.12)

We next follow another development route. In particular, we rewrite Eq. (1.7) in the form

(1.13)

By taking the squared Euclidean norm of both sides of Eq. (1.13), we obtain

(1.14)@ @w(k + 1) @ @ 2 = @ @w(k) @ @ 2 + @ @x(k) @ @ 2 + 2wT(k)x(k)

w(k + 1) = w(k) + x(k)  for k = 1, ..., n and x(k) � h1

@ @w(n + 1) @ @ 2 �
n2�2@ @wo @ @ 2

@ @wo @ @ 2 @ @w(n + 1) @ @ 2 � n2�2

@ @wo @ @ 2 @ @w(n + 1) @ @ 2



But, wT(k)x(k) � 0. We therefore deduce from Eq. (1.14) that

or, equivalently,

(1.15)

Adding these inequalities for k = 1, ..., n, and invoking the assumed initial condition
w(0) = 0, we get the inequality

(1.16)

where � is a positive number defined by

(1.17)

Equation (1.16) states that the squared Euclidean norm of the weight vector w(n � 1)
grows at most linearly with the number of iterations n.

The second result of Eq. (1.16) is clearly in conflict with the earlier result of
Eq. (1.12) for sufficiently large values of n. Indeed, we can state that n cannot be larger
than some value nmax for which Eqs. (1.12) and (1.16) are both satisfied with the equality
sign. That is, nmax is the solution of the equation

Solving for nmax, given a solution vector wo, we find that

(1.18)

We have thus proved that for η(n) = 1 for all n and w(0) = 0, and given that a solution
vector wo exists, the rule for adapting the synaptic weights of the perceptron must ter-
minate after at most nmax interations. Surprisingly, this statement, proved for hypothe-
sis h1, also holds for huypothesis h2. Note however,

We may now state the fixed-increment covergence theorem for the perceptron as
follows (Rosenblatt, 1962):

Let the subsets of training vectors h1 and h2 be linearly separable. Let the inputs presented
to the perceptron originate from these two subsets. The perceptron converges after some
no iterations, in the sense that

is a solution vector for n0 � nmax.

Consider next the absolute error-correction procedure for the adaptation of a single-
layer perceptron, for which �(n) is variable. In particular, let �(n) be the smallest integer
for which the condition

�(n)xT(n)x(n) 7 @wT(n)x(n) @

w(no) = w(no + 1) = w(no + 2) = p

nmax =
� @ @wo @ @ 2

�2

n2
max�

2@ @wo @ @ 2 = nmax�

� = max
x(k)�h1

 @ @x(k) @ @ 2
� n�

@ @w(n + 1) @ @ 2 � a
n

k=1
@ @x(k) @ @ 2

@ @w(k + 1) @ @ 2 - @ @w(k) @ @ 2 � @ @x(k) @ @ 2,   k = 1, ..., n

@ @w(k + 1) @ @ 2 � @ @w(k) @ @ 2 + @ @x(k) @ @ 2
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holds.With this procedure we find that if the inner product wT(n)x(n) at iteration n has
an incorrect sign, then wT(n + 1)x(n) at iteration n + 1 would have the correct sign.This
suggests that if wT(n)x(n) has an incorrect sign, at iteration n, we may modify the train-
ing sequence at iteration n + 1 by setting x(n + 1) = x(n). In other words, each pattern is
presented repeatedly to the perceptron until that pattern is classified correctly.

Note also that the use of an initial value w(0) different from the null condition
merely results in a decrease or increase in the number of iterations required to converge,
depending on how w(0) relates to the solution wo. Regardless of the value assigned to
w(0), the perceptron is assured of convergence.

In Table 1.1, we present a summary of the perceptron convergence algorithm
(Lippmann, 1987). The symbol sgn(?), used in step 3 of the table for computing the
actual response of the perceptron, stands for the signum function:

(1.19)

We may thus express the quantized response y(n) of the perceptron in the compact form

(1.20)

Notice that the input vector x(n) is an (m + 1)-by-1 vector whose first element is fixed
at +1 throughout the computation. Correspondingly, the weight vector w(n) is an

y(n) = sgn[wT(n)x(n)]

sgn(v) = e+1   if v 7 0
-1   if v 6 0
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TABLE 1.1 Summary of the Perceptron Convergence Algorithm

Variables and Parameters:

x(n) = (m + 1)-by-1 input vector
= [+1, x1(n), x2(n), ..., xm(n)]T

w(n) = (m + 1)-by-1 weight vector
= [b, w1(n), w2(n), ..., wm(n)]T

b = bias
y(n) = actual response (quantized)
d(n) = desired response

� = learning-rate parameter, a positive constant less than unity

1. Initialization. Set w(0) = 0. Then perform the following computations for time-step n = 1, 2, ....
2. Activation. At time-step n, activate the perceptron by applying continuous-valued input vector x(n) and desired

response d(n).
3. Computation of Actual Response. Compute the actual response of the perceptron as

where sgn(·) is the signum function.
4. Adaptation of Weight Vector. Update the weight vector of the perceptron to obtain

where

5. Continuation. Increment time step n by one and go back to step 2.

d(n) = e+1 if x(n) belongs to class c1

-1 if x(n) belongs to class c2

w(n + 1) = w(n) + �[d(n) - y(n)]x(n)

y(n) = sgn[wT(n)x(n)]



(m + 1)-by-1 vector whose first element equals the bias b.One other important point to note
in Table 1.1 is that we have introduced a quantized desired response d(n), defined by

(1.21)

Thus, the adaptation of the weight vector w(n) is summed up nicely in the form of the
error-correction learning rule

(1.22)

where � is the learning-rate parameter and the difference d(n) - y(n) plays the role of
an error signal. The learning-rate parameter is a positive constant limited to the range
0 < � � 1.When assigning a value to it inside this range, we must keep in mind two con-
flicting requirements (Lippmann, 1987):

• averaging of past inputs to provide stable weight estimates, which requires a
small �;

• fast adaptation with respect to real changes in the underlying distributions of the
process responsible for the generation of the input vector x, which requires a large �.

1.4 RELATION BETWEEN THE PERCEPTRON AND BAYES CLASSIFIER
FOR A GAUSSIAN ENVIRONMENT

The perceptron bears a certain relationship to a classical pattern classifier known as the
Bayes classifier. When the environment is Gaussian, the Bayes classifier reduces to a
linear classifier.This is the same form taken by the perceptron. However, the linear na-
ture of the perceptron is not contingent on the assumption of Gaussianity. In this sec-
tion, we study this relationship and thereby develop further insight into the operation
of the perceptron. We begin the discussion with a brief review of the Bayes classifier.

Bayes Classifier

In the Bayes classifier, or Bayes hypothesis testing procedure, we minimize the average
risk, denoted by r. For a two-class problem, represented by classes c1 and c2, the av-
erage risk is defined by Van Trees (1968) as

(1.23)

where the various terms are defined as follows:

� prior probability that the observation vector x (representing a realiza-
tion of the random vector X) corresponds to an object in class C1, with
i � 1, 2, and p1 + p2 = 1

pi

+ c21p13h2

pX(x @c1)dx + c12p23h1

pX(x @c2)dx

r = c11p13h1

pX(x @c1)dx + c22p23h2

pX(x @c2)dx

w(n + 1) = w(n) + �[d(n) - y(n)]x(n)

d(n) = e+1    if x(n) belongs to class c1

-1    if x(n) belongs to class c2
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� cost of deciding in favor of class ci represented by subspace hi when
class cj is true (i.e., observation vector x corresponds to an object in
class C1), with i, j � 1, 2

� conditional probability density function of the random vector X, given that
the observation vector x corresponds to an object in class C1, with i � 1, 2.

The first two terms on the right-hand side of Eq. (1.23) represent correct decisions
(i.e., correct classifications), whereas the last two terms represent incorrect decisions
(i.e., misclassifications). Each decision is weighted by the product of two factors: the
cost involved in making the decision and the relative frequency (i.e., prior probability)
with which it occurs.

The intention is to determine a strategy for the minimum average risk. Because we
require that a decision be made, each observation vector x must be assigned in the over-
all observation space to either or . Thus,

(1.24)

Accordingly, we may rewrite Eq. (1.23) in the equivalent form

(1.25)

where c11 < c21 and c22 < c12. We now observe the fact that

(1.26)

Hence, Eq. (1.25) reduces to

(1.27)

The first two terms on the right-hand side of Eq. (1.27) represent a fixed cost. Since
the requirement is to minimize the average risk , we may therefore deduce the fol-
lowing strategy from Eq.(1.27) for optimum classification:

1. All values of the observation vector x for which the integrand (i.e., the ex-
pression inside the square brackets) is negative should be assigned to subset 
(i.e., class ), for the integral would then make a negative contribution to the
risk .

2. All values of the observation vector x for which the integrand is positive should be
excluded from subset (i.e., assigned to class ), for the integral would then
make a positive contribution to the risk .

3. Values of x for which the integrand is zero have no effect on the average risk and
may be assingned arbitrarily. We shall assume that these points are assigned to
subset (i.e., class ).c2x2

r

r
c2x1

r
c1

x1

r

+ 3x1

[p2(c12 - c22) pX(x�c2) - p1(c21 - c11) pX(x�c1)]dx

r = c21p1 + c22p2

3xpX(x�c1)dx = 3xpX(x�c2)dx = 1

+ c21p13x-x1

pX(x�c1)x + c12p23x1

pX(x�c2)dx

r = c11p13x1

pX(x�c1)dx + c22p23x-x1

pX(x�c2)dx

x = x1 + x2

x2x1x

pX(x�ci)

cij
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On this basis, we may now formulate the Bayes classifier as follows:

If the condition

holds, assign the observation vector x to subspace (i.e., class ). Otherwise assign x to
(i.e., class ).

To simplify matters, define

(1.28)

and

(1.29)

The quantity , the ratio of two conditional probability density functions, is called the
likelihood ratio. The quantity is called the threshold of the test. Note that both 
and are always positive. In terms of these two quantities, we may now reformulate the
Bayes classifier by stating the following

If, for an observation vector x, the likelihood ratio is greater than the threshold , assign
x to class . Otherwise, assign it to class .

Figure 1.5a depicts a block-diagram representation of the Bayes classifier. The
important points in this block diagram are twofold:

1. The data processing involved in designing the Bayes classifier is confined entirely
to the computation of the likelihood ratio .¶(x)

c2c1

�¶(x)

�
¶(x)�

¶(x)

� =
p2(c12 - c22)

p1(c21 - c11)

¶(x) =
pX(x�c1)

pX(x�c2)

c2

x2c1x1

p1(c21 - c11) pX(x�c1) 7 p2(c12 - c22) pX(x�c2)
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FIGURE 1.5 Two equivalent implementations of the Bayes classifier: (a) Likelihood ratio
test, (b) Log-likelihood ratio test.
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2. This computation is completely invariant to the values assigned to the prior prob-
abilities and costs involved in the decision-making process.These quantities merely
affect the value of the threshold .

From a computational point of view, we find it more convenient to work with
the logarithm of the likelihood ratio rather than the likelihood ratio itself. We are
permitted to do this for two reasons. First, the logarithm is a monotonic function.
Second, the likelihood ratio and threshold are both positive. Therefore, the
Bayes classifier may be implemented in the equivalent form shown in Fig. 1.5b. For
obvious reasons, the test embodied in this latter figure is called the log-likelihood
ratio test.

Bayes Classifier for a Gaussian Distribution

Consider now the special case of a two-class problem, for which the underlying distrib-
ution is Gaussian. The random vector X has a mean value that depends on whether it
belongs to class or class , but the covariance matrix of X is the same for both classes.
That is to say,

The covariance matrix C is nondiagonal, which means that the samples drawn from
classes and are correlated. It is assumed that C is nonsingular, so that its inverse
matrix C�1 exists.

With this background, we may express the conditional probability density function
of X as the multivariate Gaussian distribution

(1.30)

where m is the dimensionality of the observation vector x.
We further assume the following:

1. The two classes and are equiprobable:

(1.31)

2. Misclassifications carry the same cost, and no cost is incurred on correct classifi-
cations:

(1.32)

We now have the information we need to design the Bayes classifier for the two-
class problem. Specifically, by substituting Eq. (1.30) into (1.28) and taking the natural
logarithm, we get (after simplifications)

c21 = c12 and c11 = c22 = 0

p1 = p2 =
1
2

c2c1

pX(x�ci) =
1

(2�)m�2(det(C))1�2
 exp a-

1
2

(x - �i)
T C-1(x - �i) b ,  i = 1, 2

c2c1

�[(X - �2)(X - �2)
T] = C

Class c2: �[X] = �2

�[(X - �1)(X - �1)
T] = C

Class c1: �[X] = �1

c2c1

�¶(x)

�
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(1.33)

By substituting Eqs. (1.31) and (1.32) into Eq. (1.29) and taking the natural logarithm,
we get

(1.34)

Equations (1.33) and (1.34) state that the Bayes classifier for the problem at hand is a
linear classifier, as described by the relation

(1.35)

where

(1.36)

(1.37)

(1.38)

More specifically, the classifier consists of a linear combiner with weight vector w and
bias b, as shown in Fig. 1.6.

On the basis of Eq. (1.35), we may now describe the log-likelihood ratio test for
our two-class problem as follows:

If the output y of the linear combiner (including the bias b) is positive, assign the observation
vector x to class . Otherwise, assign it to class .

The operation of the Bayes classifier for the Gaussian environment described
herein is analogous to that of the perceptron in that they are both linear classifiers; see
Eqs. (1.1) and (1.35). There are, however, some subtle and important differences be-
tween them, which should be carefully examined (Lippmann, 1987):

• The perceptron operates on the premise that the patterns to be classified are
linearly separable. The Gaussian distributions of the two patterns assumed in the
derivation of the Bayes classifier certainly do overlap each other and are there-
fore not separable. The extent of the overlap is determined by the mean vectors

c2c1

b =
1
2

(�2
TC-1�2 - �1

TC-1�1)

 w = C -1(�1 - �2)

y = log¶(x)

y = wTx + b

log � = 0

= (�1 - �2)
TC-1x +

1
2

(�T
2 C-1�2 - �1

TC-1�1)

 log¶(x) = -
1
2

(x - �1)
TC-1(x - �1) +

1
2

(x - �2)
TC-1(x - �2)
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FIGURE 1.6 Signal-flow
graph of Gaussian classifier.
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�1 and �2 and the covariance matrix C. The nature of this overlap is illustrat-
ed in Fig. 1.7 for the special case of a scalar random variable (i.e., dimension-
ality m = 1). When the inputs are nonseparable and their distributions overlap
as illustrated, the perceptron convergence algorithm develops a problem be-
cause decision boundaries between the different classes may oscillate contin-
uously.

• The Bayes classifier minimizes the probability of classification error. This mini-
mization is independent of the overlap between the underlying Gaussian distrib-
utions of the two classes. For example, in the special case illustrated in Fig. 1.7, the
Bayes classifier always positions the decision boundary at the point where the
Gaussian distributions for the two classes and cross each other.

• The perceptron convergence algorithm is nonparametric in the sense that it makes
no assumptions concerning the form of the underlying distributions. It operates
by concentrating on errors that occur where the distributions overlap. It may
therefore work well when the inputs are generated by nonlinear physical mech-
anisms and when their distributions are heavily skewed and non-Gaussian. In
contrast, the Bayes classifier is parametric; its derivation is contingent on the as-
sumption that the underlying distributions be Gaussian, which may limit its area
of application.

• The perceptron convergence algorithm is both adaptive and simple to imple-
ment; its storage requirement is confined to the set of synaptic weights and bias.
On the other hand, the design of the Bayes classifier is fixed; it can be made adap-
tive, but at the expense of increased storage requirements and more complex
computations.

1.5 COMPUTER EXPERIMENT: PATTERN CLASSIFICATION

The objective of this computer experiment is twofold:

(i) to lay down the specifications of a double-moon classification problem that will
serve as the basis of a prototype for the part of the book that deals with pattern-
classification experiments;

c2c1
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(ii) to demonstrate the capability of Rosenblatt’s perceptron algorithm to correctly
classify linearly separable patterns and to show its breakdown when the condition
of linear separability is violated.

Specifications of the Classification Problem

Figure 1.8 shows a pair of “moons” facing each other in an asymmetrically arranged
manner. The moon labeled “Region A” is positioned symmetrically with respect to the 
y-axis, whereas the moon labeled “Region B” is displaced to the right of the y-axis by
an amount equal to the radius r and below the x-axis by the distance d. The two moons
have identical parameters:

The vertical distance d separating the two moons is adjustable; it is measured with re-
spect to the x-axis, as indicated in Fig. 1.8:

• Increasingly positive values of d signify increased separation between the two moons;
• increasingly negative values of d signify the two moons’ coming closer to each other.

The training sample t consists of 1,000 pairs of data points, with each pair consisting of
one point picked from region A and another point picked from region B, both randomly.
The test sample consists of 2,000 pairs of data points, again picked in a random manner.

 width of each moon, w = 6

 radius of each moon, r = 10
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The Experiment

The perceptron parameters picked for the experiment were as follows:

The learning-rate parameter η was varied linearly from 10-1 down to 10-5.

The weights were initially all set at zero.

Figure 1.9 presents the results of the experiment for d = 1, which corresponds to
perfect linear separability. Part (a) of the figure presents the learning curve, where the
mean-square error (MSE) is plotted versus the number of epochs; the figure shows con-
vergence of the algorithm in three iterations. Part (b) of the figure shows the decision
boundary computed through training of the perceptron algorithm, demonstrating per-
fect separability of all 2,000 test points.

In Fig. 1.10, the separation between the two moons was set at d = -4, a condition
that violates linear separability. Part (a) of the figure displays the learning curve where
the perceptron algorithm is now found to fluctuate continuously, indicating breakdown
of the algorithm. This result is confirmed in part (b) of the figure, where the decision
boundary (computed through training) intersects both moons, with a classification error
rate of (186/2000) � 100% = 9.3%.

1.6 THE BATCH PERCEPTRON ALGORITHM

The derivation of the perceptron convergence algorithm summarized in Table 1.1 was
presented without reference to a cost function. Moreover, the derivation focused on a
single-sample correction. In this section, we will do two things:

1. introduce the generalized form of a perceptron cost function;
2. use the cost function to formulate a batch version of the perceptron convergence

algorithm.

The cost function we have in mind is a function that permits the application of a
gradient search. Specifically, we define the perceptron cost function as

(1.39)

where is the set of samples x misclassified by a perceptron using w as its weight vec-
tor (Duda et al., 2001). If all the samples are classified correctly, then the set is empty,
in which case the cost function (w) is zero. In any event, the nice feature of the cost func-
tion (w) is that it is differentiable with respect to the weight vector w. Thus, differenti-
ating (w) with respect to w yields the gradient vector

(1.40)§J(w) = a
x(n)Hx

(-x(n)d(n))

J
J

J
x

x

J(w) = a
x(n)Hx

(-wTx(n)d(n))

� = 50; see Eq. (1.17)

size of the input layer = 2
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where the gradient operator

(1.41)

In the method of steepest descent, the adjustment to the weight vector w at each time-
step of the algorithm is applied in a direction opposite to the gradient vector .
Accordingly, the algorithm takes the form

(1.42)

which includes the single-sample correction version of the perceptron convergence algo-
rithm as a special case. Moreover, Eq. (1.42) embodies the batch perceptron algorithm for
computing the weight vector,given the sample set x(1),x(2), .... In particular, the adjustment
applied to the weight vector at time-step n + 1 is defined by the sum of all the samples mis-
classified by the weight vector w(n), with the sum being scaled by the learning-rate para-
meter η(n).The algorithm is said to be of the “batch” kind because at each time-step of the
algorithm, a batch of misclassified samples is used to compute the adjustment.

1.7 SUMMARY AND DISCUSSION

The perceptron is a single-layer neural network, the operation of which is based on
error-correlation learning.The term “single layer” is used here to signify the fact that the
computation layer of the network consists of a single neuron for the case of binary clas-
sification. The learning process for pattern classification occupies a finite number of it-
erations and then stops. For the classification to be successful, however, the patterns
would have to be linearly separable.

The perceptron uses the McCulloch–Pitts model of a neuron. In this context, it is
tempting to raise the question, would the perceptron perform better if it used a sigmoidal
nonlinearity in place of the hard limiter? It turns out that the steady-state, decision-making
characteristics of the perceptron are basically the same, regardless of whether we use
hard limiting or soft limiting as the source of nonlinearity in the neural model (Shynk,
1990; Shynk and Bershad, 1991).We may therefore state formally that so long as we limit
ourselves to the model of a neuron that consists of a linear combiner followed by a non-
linear element, then regardless of the form of nonlinearity used, a single-layer perceptron
can perform pattern classification only on linearly separable patterns.

The first real critique of Rosenblatt’s perceptron was presented by Minsky and
Selfridge (1961). Minsky and Selfridge pointed out that the perceptron as defined by
Rosenblatt could not even generalize toward the notion of binary parity, let alone make
general abstractions. The computational limitations of Rosenblatt’s perceptron were
subsequently put on a solid mathematical foundation in the famous book Perceptrons,
by Minsky and Papert (1969, 1988). After the presentation of some brilliant and highly
detailed mathematical analyses of the perceptron, Minsky and Papert proved that the
perceptron as defined by Rosenblatt is inherently incapable of making some global

= w(n) + �(n) a
x(n)Hx

x(n)d(n)

w(n + 1) = w(n) - �(n)§J(w)

§J(w)

� = c 0
0w1

,
0
0w2

, ..., 
0
0wm
d T
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generalizations on the basis of locally learned examples. In the last chapter of their book,
Minsky and Papert make the conjecture that the limitations they had discovered for
Rosenblatt’s perceptron would also hold true for its variants—more specifically, multi-
layer neural networks. Section 13.2 of their book (1969) says the following:

The perceptron has shown itself worthy of study despite (and even because of!) its severe
limitations. It has many features to attract attention: its linearity; its intriguing learning
theorem; its clear paradigmatic simplicity as a kind of parallel computation. There is no
reason to suppose that any of these virtues carry over to the many-layered version. Never-
theless, we consider it to be an important research problem to elucidate (or reject) our in-
tuitive judgement that the extension to multilayer systems is sterile.

This conclusion was largely responsible for casting serious doubt on the computational ca-
pabilities of not only the perceptron,but also neural networks in general up to the mid-1980s.

History has shown, however, that the conjecture made by Minsky and Papert seems
to be unjustified in that we now have several advanced forms of neural networks and
learning machines that are computationally more powerful than Rosenblatt’s perceptron.
For example, multilayer perceptrons trained with the back-propagation algorithm dis-
cussed in Chapter 4, the radial basis-function networks discussed in Chapter 5, and the
support vector machines discussed in Chapter 6 overcome the computational limita-
tions of the single-layer perceptron in their own individual ways.

In closing the discussion, we may say that the perceptron is an elegant neural net-
work designed for the classification of linearly separable patterns. Its importance is not
only historical but also of practical value in the classification of linearly separable patters.

NOTES AND REFERENCES

1. The network organization of the original version of the perceptron as envisioned by
Rosenblatt (1962) has three types of units: sensory units, association units, and response
units. The connections from the sensory units to the association units have fixed weights,
and the connections from the association units to the response units have variable
weights. The association units act as preprocessors designed to extract a pattern from
the environmental input. Insofar as the variable weights are concerned, the operation of
Rosenblatt’s original perceptron is essentially the same as that for the case of a single
response unit (i.e., single neuron).

2. Proof of the perceptron convergence algorithm presented in Section 1.3 follows the
classic book of Nilsson (1965).

PROBLEMS

1.1 Verify that Eqs. (1.19)–(1.22), summarizing the perceptron convergence algorithm, are con-
sistent with Eqs. (1.5) and (1.6).

1.2 Suppose that in the signal-flow graph of the perceptron shown in Fig. 1.1, the hard limiter
is replaced by the sigmoidal nonlinearity

�(v) = tanh a v
2
b
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where v is the induced local field. The classification decisions made by the perceptron are
defined as follows:

Observation vector x belongs to class if the output y > , where is a threshold; otherwise, x
belongs to class .

Show that the decision boundary so constructed is a hyperplane.
1.3 (a) The perceptron may be used to perform numerous logic functions. Demonstrate the

implementation of the binary logic functions AND, OR, and COMPLEMENT.
(b) A basic limitation of the perceptron is that it cannot implement the EXCLUSIVE

OR function. Explain the reason for this limitation.
1.4 Consider two one-dimensional, Gaussian-distributed classes and that have a common

variance equal to 1. Their mean values are

These two classes are essentially linearly separable. Design a classifier that separates these
two classes.

1.5 Equations (1.37) and (1.38) define the weight vector and bias of the Bayes classifier for a
Gaussian environment. Determine the composition of this classifier for the case when the
covariance matrix C is defined by

where �2 is a constant and I is the identity matrix.

Computer Experiment
1.6 Repeat the computer experiment of Section 1.5, this time, however, positioning the two

moons of Figure 1.8 to be on the edge of separability, that is, d = 0. Determine the classifi-
cation error rate produced by the algorithm over 2,000 test data points.

C = �2I

 �2 = +10

 �1 = -10

c2c1

c2

��c1
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ORGANIZATION OF THE CHAPTER

The theme of this chapter is how to use linear regression, a special form of function
approximation, to model a given set of random variables.

The chapter is organized as follows:

1. Section 2.1 is introductory, followed by Section 2.2 that sets the stage for the rest of
the chapter by describing the mathematical framework of linear regression models.

2. Section 2.3 derives the maximum a posteriori (MAP) estimate of the parameter vector
of a linear regression model.

3. Section 2.4 tackles the parameter estimation problem using the method of least
squares and discusses this method’s relationship to the Bayesian approach.

4. In Section 2.5, we revisit the pattern-classification experiment considered in 
Chapter 1, this time using the method of least squares.

5. Section 2.6 addresses the problem of model-order selection.
6. Section 2.7 discusses consequences of finite sample size in parameter estimation,

including the bias–variance dilemma.

C H A P T E R  2

Model Building 
through Regression

7. Section 2.8 introduces the notion of instrumental variables to deal with the “errors-
in-variables” problem.

Section 2.9 provides a summary and discussion that conclude the chapter.

2.1 INTRODUCTION

The idea of model building shows up practically in every discipline that deals with statistical
data analysis. Suppose, for example, we are given a set of random variables and the as-
signed task is to find the relationships that may exist between them, if any. In regression,
which is a special form of function approximation, we typically find the following scenario:

• One of the random variables is considered to be of particular interest; that random
variable is referred to as a dependent variable, or response.

• The remaining random variables are called independent variables, or regressors;
their role is to explain or predict the statistical behavior of the response.

• The dependence of the response on the regressors includes an additive error term,
to account for uncertainties in the manner in which this dependence is formulated;
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the error term is called the expectational error, or explanational error, both of which
are used interchangeably.

Such a model is called the regression model.1

There are two classes of regression models: linear and nonlinear. In linear regres-
sion models, the dependence of the response on the regressors is defined by a linear func-
tion, which makes their statistical analysis mathematically tractable. On the other hand,
in nonlinear regression models, this dependence is defined by a nonlinear function, hence
the mathematical difficulty in their analysis. In this chapter, we focus attention on linear
regression models. Nonlinear regression models are studied in subsequent chapters.

The mathematical tractability of linear regression models shows up in this chapter
in two ways. First, we use Bayesian theory2 to derive the maximum a posteriori estimate
of the vector that parameterizes a linear regression model. Next, we view the parameter
estimation problem using another approach, namely, the method of least squares, which
is perhaps the oldest parameter-estimation procedure; it was first derived by Gauss in
the early part of the 19th century. We then demonstrate the equivalence between these
two approaches for the special case of a Gaussian environment.

2.2 LINEAR REGRESSION MODEL: PRELIMINARY CONSIDERATIONS

Consider the situation depicted in Fig. 2.1a, where an unknown stochastic environment
is the focus of attention. The environment is probed by applying a set of inputs, consti-
tuting the regressor

(2.1)

where the superscript T denotes matrix transposition. The resulting output of the envi-
ronment, denoted by d, constitutes the corresponding response, which is assumed to be
scalar merely for the convenience of presentation. Ordinarily, we do not know the func-
tional dependence of the response d on the regressor x, so we propose a linear regres-
sion model, parameterized as:

(2.2)

where w1, w2, ..., wM denote a set of fixed, but unknown, parameters, meaning that the en-
vironment is stationary. The additive term ε, representing the expectational error of the
model, accounts for our ignorance about the environment. A signal-flow graph depiction
of the input–output behavior of the model described in Eq. (2.2) is presented in Fig. 2.1b.

Using matrix notation, we may rewrite Eq. (2.2) in the compact form

(2.3)

where the regressor x is defined in terms of its elements in Eq. (2.1). Correspondingly,
the parameter vector w is defined by

(2.4)w = [w1, w2, ..., wM]T

d = wTx + ε

d = a
M

j = 1
wjxj + ε

x = [x1, x2, ..., xM]T



whose dimensionality is the same as that of the regressor x; the common dimension
M is called the model order. The matrix term wTx is the inner product of the vectors w
and x.

With the environment being stochastic, it follows that the regressor x, the response
d, and the expectational error ε are sample values (i.e., single-shot realizations) of the
random vector X, the random variable D, and the random variable E, respectively.With
such a stochastic setting as the background, the problem of interest may now be stated
as follows:

Given the joint statistics of the regressor X and the corresponding response D, estimate the
unknown parameter vector w.

When we speak of the joint statistics, we mean the following set of statistical parameters:

• the correlation matrix of the regressor X;
• the variance of the desired response D;
• the cross-correlation vector of the regressor X and the desired response D.

It is assumed that the means of both X and D are zero.
In Chapter 1, we discussed one important facet of Bayesian inference in the con-

text of pattern classification. In this chapter, we study another facet of Bayesian infer-
ence that addresses the parameter estimation problem just stated.
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FIGURE 2.1 (a) Unknown stationary stochastic environment. (b) Linear regression model
of the environment.
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2.3 MAXIMUM A POSTERIORI ESTIMATION OF 
THE PARAMETER VECTOR

The Bayesian paradigm provides a powerful approach for addressing and quantifying
the uncertainty that surrounds the choice of the parameter vector w in the linear re-
gression model of Eq. (2.3). Insofar as this model is concerned, the following two re-
marks are noteworthy:

1. The regressor X acts as the “excitation,” bearing no relation whatsoever to the
parameter vector w.

2. Information about the unknown parameter vector W is contained solely in the
desired response D that acts as the “observable” of the environment.

Accordingly, we focus attention on the joint probablity density function of W and D, con-
ditional on X.

Let this density function be denoted by  pW, D | X(w, d |x). From probability theory,
we know that this density function may be expressed as

(2.5)

Moreover, we may also express it in the equivalent form

(2.6)

In light of this pair of equations, we may go on to write

(2.7)

provided that . Equation (2.7) is a special form of Bayes’s theorem; it em-
bodies four density functions, characterized as follows:

1. Observation density: This stands for the conditional probability density function
pD |W, X(d | w, x), referring to the “observation” of the environmental response d
due to the regressor x, given the parameter vector w.

2. Prior: This stands for the probability density function pW(w), referring to infor-
mation about the parameter vector w, prior to any observations made on the en-
vironment. Hereafter, the prior is simply denoted by π(w).

3. Posterior density: This stands for the conditional probability density function
pW |D, X(w | d, x), referring to the parameter vector w “after” observation of the
environment has been completed. Hereafter, the posterior density is denoted by
π(w | d, x). The conditioning response–regressor pair (x, d) is the “observation
model,” embodying the response d of the environment due to the regressor x.

4. Evidence: This stands for the probability density function pD(d), referring to the
“information” contained in the response d for statistical analysis.

pD(d) Z 0

pW � D, X(w � d,  x) =
pD �  W, X(d�w, x)pW(w)

pD(d)

pW, D � X(w, d �x) = pD �W, X(d �w, x)pW(w)

pW, D � X(w, d �x) = p W �D, X(w �d, x)pD(d)
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The observation density pD |W, X(d | w, x) is commonly reformulated mathematically as
the likelihood function, defined by

(2.8)l(w �d, x) = pD �W, X(d �w, x)



Moreover, insofar as the estimation of the parameter vector w is concerned, the evi-
dence pD(d) in the denominator of the right-hand side of Eq. (2.7) plays merely the role
of a normalizing constant. Accordingly, we may express Eq. (2.7) in words by stating the
following:

The posterior density of the vector w parameterizing the regression model is proportional to
the product of the likelihood function and the prior.

That is,

(2.9)

where the symbol � signifies proportionality.
The likelihood function l(w |d, x), considered on its own, provides the basis for the

maximum-likelihood (ML) estimate of the parameter vector w, as shown by

(2.10)

For a more profound estimate of the parameter vector w, however, we look to
the posterior density �(w|d, x). Specifically, we define the maximum a posteriori (MAP)
estimate of the parameter vector w by the formula

(2.11)

We say that the MAP estimator is more profound than the ML estimator for two
important reasons:

1. The Bayesian paradigm for parameter estimation, rooted in the Bayes’ theo-
rem as shown in Eq. (2.7) and exemplified by the MAP estimator of Eq. (2.11),
exploits all the conceivable information about the parameter vector w. In contrast,
the ML estimator of Eq. (2.10) lies on the fringe of the Bayesian paradigm,
ignoring the prior.

2. The ML estimator relies solely on the observation model (d, x) and may there-
fore lead to a nonunique solution. To enforce uniqueness and stability on the
solution, the prior �(w) has to be incorporated into the formulation of the estima-
tor ; this is precisely what is done in the MAP estimator.

Of course, the challenge in applying the MAP estimation procedure is how to come up with
an appropriate prior, which makes MAP more computationally demanding than ML.

One last comment is in order. From a computational perspective, we usually find
it more convenient to work with the logarithm of the posterior density rather than the
posterior density itself. We are permitted to do this, since the logarithm is a monotoni-
cally increasing function of its argument. Accordingly, we may express the MAP esti-
mator in the desired form by writing

(2.12)

where “log”denotes the natural logarithm.A similar statement applies to the ML estimator.

wMAP = arg max
w

 log(�(w �d, x))

wMAP = arg max  
w

�(w � d, x)

wML = arg max 
w

l(w � d, x)

�(w �d, x) r l(w �d, x)�(w)

72 Chapter 2 Model Building through Regression



Parameter Estimation in a Gaussian Environment

Let xi and di denote the regressor applied to the environment and the resulting response,
respectively, on the ith trial of an experiment performed on the environment. Let the
experiment be repeated a total of N times. We thus express the training sample, avail-
able for parameter estimation, as

(2.13)

To proceed with the task of parameter estimation,we make the following assumptions:

Assumption 1: Statistical Independence and Identical Distribution

The N examples, constituting the training sample, are statistically independent and iden-
tically distributed (iid).

Assumption 2: Gaussianity 

The environment, responsible for generation of the training sample t, is Gaussian
distributed.

More specifically, the expectational error in the linear regression model of Eq. (2.3)
is described by a Gaussian density function of zero mean and common variance σ2, as
shown by

(2.14)

Assumption 3: Stationarity 

The environment is stationary, which means that the parameter vector w is fixed, but
unknown, throughout the N trials of the experiment.

More specifically, the M elements of the weight vector w are themselves assumed
to be iid, with each element being governed by a Gaussian density function of zero mean
and common variance σ2

w.We may therefore express the prior for the kth element of the
parameter vector w as

(2.15)

Rewriting Eq. (2.3) for the ith trial of the experiment performed on the environ-
ment, we have

(2.16)

where di, xi, and εi are sample values (i.e., single-shot realizations) of the random
variable D, the random vector X, and the random variable E, respectively.

Let denote the statistical expectation operator. Since, under Assumption 2,
we have

(2.17)�[Ei] = 0,  for all i 

�

di = wTxi + εi,  i = 1, 2, ..., N 

�(wk) =
1

12� �w

 exp a-
w2

k

2�2
w

b ,  k = 1, 2, ..., M 

pE(εi) =
1

12� �
 exp a-  

ε2
i

2�2
b ,  i = 1, 2, ..., N 

t = {xi, di}
N
i = 1
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and

(2.18)

it follows from Eq. (2.16) that, for a given regressor xi,

(2.19)

(2.20)

We thus complete the Gaussian implication of Assumption 2 by expressing the likelihood
function for the ith trial, in light of Eq. (2.14), as

(2.21)

Next, invoking the iid characterization of the N trials of the experiment on the
environment under Assumption 1, we express the overall likelihood function for the
experiment as

(2.22)

which accounts for the total empirical knowledge about the weight vector w contained
in the training sample t of Eq. (2.13).

The only other source of information that remains to be accounted for is that con-
tained in the prior �(w). Invoking the zero-mean Gaussian characterization of the kth
element of w described in Eq. (2.15), followed by the iid characterization of the M ele-
ments of w under Assumption 3, we write

(2.23)

where ||w|| is the Euclidean norm of the unknown parameter vector w, defined by

 =
1

(22��w)M
 exp a-

1

2�2
w

 7w 7 2 b  

 =
1

(22��w)M
 exp a-

1

2�2
w
a
M

i = 1
w2

k b
 =

1

(22��w)M
 q

M

k = 1
exp a-

w2
k

2�2
w

b
 �(w) = q

M

k = 1
�(wk)

 =
1

(22��)N
 exp a- 

1

2�2 a
N

i = 1
(di - wTxi)

2 b  

 =
1

(22��)N
 q

N

i = 1
exp a- 

1

2�2
 (di - wTxi)

2 b
 l(w�d, x) = q

N

i = 1
l(w�di, xi)

l(w �di, xi) =
1

12� �
 exp a-

1

2�2
 (di - wTxi)

2 b ,  i = 1, 2, ..., N

 = �2

 = �[E2
i ]

 var[Di] = �[(Di - �[Di])2]

 �[Di] = wTxi,  i = 1, 2, ..., N 

var[Ei] = �[E2
i ] = �2,  for all i 
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(2.24)

Hence, substituting Eqs. (2.22) and (2.23) into Eq. (2.9), and then simplifying the result,
we get the posterior density

(2.25)

We are now fully equipped to apply the MAP formula of Eq. (2.12) to the esti-
mation problem at hand. Specifically, substituting Eq. (2.25) into this formula, we get

(2.26)

where we have introduced the new parameter

(2.27)

Now we define the quadratic function

(2.28)

Clearly, maximization of the argument in Eq. (2.26) with respect to w is equivalent to
minimization of the quadratic function e(w).Accordingly, the optimum estimate
is obtained by differentiating the function e(w) with respect to w and setting the result
equal to zero. In so doing, we obtain the desired MAP estimate of the M-by-1 parame-
ter vector as

(2.29)

where we have introduced two matrices and a vector:

1. the time-averaged M-by-M correlation matrix of the regressor x, which is defined by

(2.30)

where xix
T
j is the outer product of the regressors xi and xj, applied to the environ-

ment on the ith and jth experimental trials;
2. the M-by-M identity matrix I whose M diagonal elements are unity and the re-

maining elements are all zero;
3. the time-averaged M-by-1 cross-correlation vector of the regressor x and the de-

sired response d, which is defined by
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The correlations (N) and (N) are both averaged over all the N examples of the
training sample t—hence the use of the term “time averaged.”

Suppose we assign a large value to the variance σ2
w, which has the implicit effect

of saying that the prior distribution of each element of the parameter vector w is
essentially uniform over a wide range of possible values. Under this condition, the
parameter 
 is essentially zero and the formula of Eq. (2.29) reduces to the ML estimate

(2.32)

which supports the point we made previously: The ML estimator relies solely on the
observation model exemplified by the training sample t. In the statistics literature on
linear regression, the equation

(2.33)

is commonly referred to as the normal equation; the ML estimator is, of course, the
solution of this equation. It is also of interest that the ML estimator is an unbiased esti-
mator, in the sense that for an infinitely large training sample t, we find that, in the
limit, converges to the parameter vector w of the unknown stochastic environment,
provided that the regressor x(n) and the response d(n) are drawn from jointly ergodic
processes, in which case time averages may be substituted for ensemble averages. Under
this condition, in Problem 2.4, it is shown that

In contrast, the MAP estimator of Eq. (2.29) is a biased estimator, which therefore
prompts us to make the following statement:

In improving the stability of the maximum likelihood estimator through the use of regular-
ization (i.e., the incorporation of prior knowledge), the resulting maximum a posteriori esti-
mator becomes biased.

In short, we have a tradeoff between stability and bias.

2.4 RELATIONSHIP BETWEEN REGULARIZED LEAST-SQUARES
ESTIMATION AND MAP ESTIMATION

We may approach the estimation of the parameter vector w in another way by focusing
on a cost function e0(w) defined as the squared expectational errors summed over the N
experimental trials on the environment. Specifically, we write

where we have included w in the argument of εi to stress the fact that the uncertainty in
the regression model is due to the vector w. Rearranging terms in Eq. (2.16), we
obtain

(2.34)εi(w) = di - wTxi,  i = 1, 2, ..., N 

e0(w) = a
N

i = 1
ε2

i (w)

limit
N S q

 ŵML(N) = w

ŵML

ŵML

R̂xx(N) ŵML(N) = r̂dx(N)

ŵ ML(N) = R̂-1
xx(N) r̂dx(N)

r̂dxR̂xx
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Substituting this equation into the expression for e0(w) yields

(2.35)

which relies solely on the training sample t. Minimizing this cost function with respect
to w yields a formula for the ordinary least-squares estimator that is identical to the
maximum-likelihood estimator of Eq. (2.32), and hence there is a distinct possibility of
obtaining a solution that lacks uniqueness and stability.

To overcome this serious problem, the customary practice is to expand the cost
function of Eq. (2.35) by adding a new term as follows:

(2.36)

This expression is identical to the function defined in Eq. (2.28). The inclusion of the
squared Euclidean norm ||w||2 is referred to as structural regularization. Correspond-
ingly, the scalar 
 is referred to as the regularization parameter.

When 
 � 0, the implication is that we have complete confidence in the observa-
tion model exemplified by the training sample t. At the other extreme, when 
 � ,
the implication is that we have no confidence in the observation model. In practice, the
regularization parameter 
 is chosen somewhere between these two limiting cases.

In any event, for a prescribed value of the regularization parameter 
, the solution
of the regularized method of least squares, obtained by minimizing the regularized cost
function of Eq. (2.36) with respect to the parameter vector w, is identical to the MAP
estimate of Eq. (2.29). This particular solution is referred to as the regularized least-
squares (RLS) solution.

2.5 COMPUTER EXPERIMENT: PATTERN CLASSIFICATION

In this section, we repeat the computer experiment performed on the pattern-
classification problem studied in Chapter 1, where we used the perceptron algorithm.As
before, the double-moon structure, providing the training as well as the test data, is that
shown in Fig. 1.8.This time, however, we use the method of least squares to perform the
classification.

Figure 2.2 presents the results of training the least squares algorithm for the
separation distance between the two moons set at d � 1. The figure shows the deci-
sion boundary constructed between the two moons. The corresponding results
obtained using the perceptron algorithm for the same setting d � 1 were presented
in Fig. 1.9. Comparing these two figures, we make the following interesting 
observations:

1. The decision boundaries constructed by the two algorithms are both linear, which
is intuitively satisfying. The least-squares algorithm discovers the asymmetric
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manner in which the two moons are positioned relative to each other, as seen by
the positive slope of the decision boundary in Fig. 2.2. Interestingly enough, the per-
ceptron algorithm completely ignores this asymmetry by constructing a decision
boundary that is parallel to the x-axis.

2. For the separation distance d � 1, the two moons are linearly separable. The per-
ceptron algorithm responds perfectly to this setting; on the other hand, in discov-
ering the asymmetric feature of the double-moon figure, the method of least
squares ends up misclassifying the test data, incurring a classification error of 0.8%.

3. Unlike the perceptron algorithm, the method of least squares computes the deci-
sion boundary in one shot.

Figure 2.3 presents the results of the experiment performed on the double-moon
patterns for the separation distance d � �4, using the method of least squares. As
expected, there is now a noticeable increase in the classification error, namely, 9.5%.
Comparing this performance with the 9.3% classification error of the perceptron algo-
rithm for the same setting, which was reported in Fig. 1.10, we see that the classification
performance of the method of least squares has degraded slightly.

The important conclusion to be drawn from the pattern-classification computer
experiments of Sections 1.5 and 2.5 is as follows:

Although the perceptron and the least-squares algorithms are both linear, they operate dif-
ferently in performing the task of pattern classification.
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2.6 THE MINIMUM-DESCRIPTION-LENGTH PRINCIPLE

The representation of a stochastic process by a linear model may be used for synthesis
or analysis. In synthesis, we generate a desired time series by assigning a formulated set
of values to the parameters of the model and feeding it with white noise of zero mean
and prescribed variance; the model so obtained is referred to as a generative model. In
analysis, on the other hand, we estimate the parameters of the model by processing a
given time series of finite length, using the Bayesian approach or the regularized method
of least squares. Insofar as the estimation is statistical, we need an appropriate measure
of the fit between the model and the observed data.We refer to this second problem as
that of model selection. For example, we may want to estimate the number of degrees
of freedom (i.e., adjustable parameters) of the model, or even the general structure of
the model.

A plethora of methods for model selection has been proposed in the statistics lit-
erature, with each one of them having a goal of its own. With the goals being different,
it is not surprising to find that the different methods yield wildly different results when
they are applied to the same data set (Grünwald, 2007).

In this section, we describe a well-proven method, called the minimum-description-
length (MDL) principle for model selection, which was pioneered by Rissanen (1978).

Inspiration for the development of the MDL principle is traced back to
Kolmogorov complexity theory. In this remarkable theory, the great mathematician
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FIGURE 2.3 Least-squares classification of the double-moon of Fig. 1.8 with distance d � -4.
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Kolmogorov defined complexity as follows (Kolmogorov, 1965; Li and Vitányi, 1993;
Cover and Thomas, 2006; Grünwald, 2007):

The algorithmic (descriptive) complexity of a data sequence is the length of the shortest bi-
nary computer program that prints out the sequence and then halts.

What is truly amazing about this definition of complexity is the fact that it looks to the
computer, the most general form of data compressor, rather than the notion of proba-
bility distribution for its basis.

Using the fundamental concept of Kolmogorov complexity, we may develop a
theory of idealized inductive inference, the goal of which is to find “regularity” in a given
data sequence. The idea of viewing learning as trying to find “regularity” provided the
first insight that was used by Rissanen in formulating the MDL principle. The second
insight used by Rissanen is that regularity itself may be identified with the “ability to
compress.”

Thus, the MDL principle combines these two insights, one on regularity and the
other on the ability to compress, to view the process of learning as data compression,
which, in turn, teaches us the following:

Given a set of hypotheses,h, and a data sequence d, we should try to find the particular hypothesis
or some combination of hypotheses in h, that compresses the data sequence d the most.

This statement sums up what the MDL principle is all about very succinctly. The sym-
bol d for a sequence should not be confused with the symbol d used previously for de-
sired response.

There are several versions of the MDL principle that have been described in the
literature.We will focus on the oldest, but simplest and most well-known version, known
as the simplistic two-part code MDL principle for probabilistic modeling. By the term
“simplistic,” we mean that the codelengths under consideration are not determined in
an optimal fashion. The terms “code” and “codelengths” used herein pertain to the
process of encoding the data sequence in the shortest or least redundant manner.

Suppose that we are given a candidate model or model class . With all the ele-
ments of being probabilistic sources, we henceforth refer to a point hypothesis as p
rather than h. In particular, we look for the probability density function that best
explains a given data sequence d. The two-part code MDL principle then tells us to look
for the (point) hypothesis that minimizes the description length of p, which we
denote by L1(p), and the description length of the data sequence d when it is encoded
with the help of p, which we denote as L2(d | p). We thus form the sum

and pick the particular point hypothesis that minimizes L12(p, d).
It is crucial that p itself be encoded as well here.Thus, in finding the hypothesis that

compresses the data sequence d the most, we must encode (describe or compress) the
data in such a way that a decoder can retrieve the data even without knowing the
hypothesis in advance.This can be done by explicitly encoding a hypothesis, as in the fore-
going two-part code principle; it can also be done in quite different ways—for example,
by averaging over hypotheses (Grünwald, 2007).

p � m

L12(p, d) = L1(p) + L2(d �p)

p �m

p �m
m

m
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Model-Order Selection

Let m(1),m(2), ...,m(k), ...,denote a family of linear regression models that are associated with
the parameter vector ,where the model order k � 1,2, ...; that is, the weight spaces
w(1),w(2), ...,w(k), ..., are of increasing dimensionality. The issue of interest is to identify
the model that best explains an unknown environment that is responsible for generat-
ing the training sample {xi, di}

N
i�1, where xi is the stimulus and di is the corresponding re-

sponse.What we have just described is the model-order selection problem.
In working through the statistical characterization of the composite length L12(p, d),

the two-part code MDL principle tells us to pick the kth model that is the mimimizer

Error term Complexity term

(2.37)

where �(w(k)) is the prior distribution of the parameter vector w(k), and the last term
of the expression is of the order of model order k (Rissanen, 1989; Grünwald, 2007).
For a large sample size N, this last term gets overwhelmed by the second term of
the expression . The expression in Eq. (2.37) is usually partitioned into two
terms:

• the error term, denoted by -log(p(di |w
(k)) �(w(k)), which relates to the model and

the data;
• the hypothesis complexity term, denoted by , which relates to the

model alone.

In practice, the O(k) term is often ignored to simplify matters when applying Eq. (2.37),
with mixed results. The reason for mixed results is that the O(k) term can be rather
large. For linear regression models, however, it can be explicitly and efficiently com-
puted, and the resulting procedures tend to work quite well in practice.

Note also that the expression of Eq. (2.37) without the prior distribution �(w(k))
was first formulated in Rissanen (1978).

If it turns out that we have more than one minimizer of the expression in Eq.
(2.37), then we pick the model with the smallest hypothesis complexity term.And if this
move still leaves us with several candidate models, then we do not have any further
choice but to work with one of them (Grünwald, 2007).

Attributes of the MDL Principle

The MDL principle for model selection offers two important attributes (Grünwald,
2007):

1. When we have two models that fit a given data sequence equally well, the MDL
principle will pick the one that is the “simplest” in the sense that it allows the use
of a shorter description of the data. In other words, the MDL principle implements
a precise form of Occam’s razor, which states a preference for simple theories:

Accept the simplest explanation that fits the data.

k
2 log(N) + O(k)

k
2 log(N)

k = 1, 2, ...
i = 1, 2, ..., N

min
k
e- log p(di @w(k))�(w(k)) +

k

2
 log(N) + O(k) f ,

wk �wk
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2. The MDL principle is a consistent model selection estimator in the sense that it con-
verges to the true model order as the sample size increases.

Perhaps the most significant point to note is that, in nearly all of the applications in-
volving the MDL principle, few, if any, anomalous results or models with undesirable
properties have been reported in the literature.

2.7 FINITE SAMPLE-SIZE CONSIDERATIONS

A serious limitation of the maximum-likelihood or ordinary least-squares approach to
parameter estimation is the nonuniqueness and instability of the solution, which is at-
tributed to complete reliance on the observation model (i.e., the training sample t); the
traits of nonuniqueness and instability in characterizing a solution are also referred to
as an overfitting problem in the literature.To probe more deeply into this practical issue,
consider the generic regressive model

(2.38)

where f(x, w) is a deterministic function of the regressor x for some w parameterizing
the model and ε is the expectational error. This model, depicted in Fig. 2.4a, is a
mathematical description of a stochastic environment; its purpose is to explain or predict
the response d produced by the regressor x.

Figure 2.4b is the corresponding physical model of the environment, where de-
notes an estimate of the unknown parameter vector w. The purpose of this second model
is to encode the empirical knowledge represented by the training sample t, as shown by

(2.39)

In effect, the physical model provides an approximation to the regression model of
Fig. 2.4a. Let the actual response of the physical model, produced in response to the
input vector x, be denoted by

ŵt S  

ŵ

d = f(x, w) + � 
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FIGURE 2.4 (a) Mathematical model of a stochastic environment, parameterized by the vector
w. (b) Physical model of the environment, where is an estimate of the unknown parameter
vector w.
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(2.40)

where is the input–output function realized by the physical model; the y in
Eq. (2.40) is a sample value of random variable Y. Given the training sample t of
Eq. (2.39), the estimator is the minimizer of the cost function

(2.41)

where the factor has been used to be consistent with earlier notations. Except for the 
scaling factor , the cost function is the squared difference between the environ-
mental (desired) response d and the actual response y of the physical model, computed
over the entire training sample t.

Let the symbol t denote the average operator taken over the entire training sam-
ple t. The variables or their functions that come under the average operator �t are
denoted by x and d; the pair (x, d) represents an example in the training sample t. In
contrast, the statistical expectation operator � acts on the whole ensemble of x and d,
which includes t as a subset. The difference between the operators � and �t should be
very carefully noted in what follows.

In light of the transformation described in Eq. (2.39), we may interchangeably use 
and F(x, t) and therefore rewrite Eq. (2.41) in the equivalent form

(2.42)

By adding and then subtracting f(x, w) to the argument (d - F(x, t)) and next using
Eq. (2.38), we may write

By substituting this expression into Eq. (2.42) and then expanding terms, we may recast
the cost function e( ) in the equivalent form

(2.43)

However, the last expectation term on the right-hand side of Eq. (2.43) is zero, for two
reasons:

• The expectational error is uncorrelated with the regression function f(x, w).
• The expectational error pertains to the regression model of Fig. 2.4a, whereas the

approximating function pertains to the physical model of Fig. 2.4b.

Accordingly, Eq. (2.43) reduces to

(2.44)e(ŵ) =
1
2

 �t[�2] +
1
2
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F(x,ŵ)
�

�

e(ŵ) =
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The term t[ ] on the right-hand side of Eq. (2.44) is the variance of the expectational
(regressive modeling) error , evaluated over the training sample t; here it is assumed
that has zero mean. This variance represents the intrinsic error because it is indepen-
dent of the estimate . Hence, the estimator that is the minimizer of the cost function
e( ) will also minimize the ensemble average of the squared distance between the re-
gression function f (x, w) and the approximating function . In other words, the
natural measure of the effectiveness of as a predictor of the desired response d
is defined as follows (ignoring the scaling factor 1⁄2 ):

(2.45)

This natural measure is fundamentally important because it provides the mathematical
basis for the tradeoff between the bias and variance that results from the use of 
as the approximation to f(x, w).

Bias–Variance Dilemma

From Eq. (2.38), we find that the function f (x, w) is equal to the conditional expectation
�(d|x). We may therefore redefine the squared distance between f (x) and as

(2.46)

This expression may therefore be viewed as the average value of the estimation error
between the regression function f (x, w) � �[d|x] and the approximating function ,
evaluated over the entire training sample t. Notice that the conditional mean
�[d |x] has a constant expectation with respect to the training sample t. Next we write

F(x, ŵ)

Lav(f(x, w), F(x, ŵ)) = �t[(� [d @x] - F(x, t))2]

F(x, ŵ)

F(x, ŵ)

Lav(f(x, w), F(x, ŵ)) = �t[(f(x, w) - F(x, t))2]

F(x, ŵ)
F(x, ŵ)

ŵ
ŵŵ

�
�

�2�
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where we have simply added and then subtracted the average �t[F(x, t)]. By proceed-
ing in a manner similar to that described for deriving Eq. (2.43) from Eq. (2.42), we
may reformulate Eq. (2.46) as the sum of two terms (see Problem 2.5):

(2.47)

where and are themselves respectively defined by

(2.49)

and

(2.49)

We now make two important observations:

1. The first term, , is the bias of the average value of the approximating function
F(x, t), measured with respect to the regression function f(x, w) = [d | x]. Thus,

represents the inability of the physical model defined by the function F(x, ŵ)B(ŵ)
�

B(ŵ)

V(ŵ) = �t[(F(x, t) - �t[F(x, t])2]

B(ŵ) = �t[F(x, t)] - �[d @x]

V(ŵ)B(ŵ)

Lav(f(x), F(x, t)) = B2(ŵ) + V(ŵ)

�[d �x] - F(x, t) = (�[d �x] - �t[F(x, t)]) + (�t[F(x, t)] - F(x, t))

to accurately approximate the regression function f(x, w) � �[d|x].We may there-
fore view the bias as an approximation error.

2. The second term, , is the variance of the approximating function F(x, t),
measured over the entire training sample t. Thus, represents the inadequacyV(ŵ)

V(ŵ)

B(ŵ)



of the empirical knowledge contained in the training sample tabout the regres-
sion function f(x, w). We may therefore view the variance as the manifesta-
tion of an estimation error.

Figure 2.5 illustrates the relations between the target (desired) and approximat-
ing functions; it shows how the estimation errors, namely, the bias and variance, accu-
mulate. To achieve good overall performance, the bias and the variance of
the approximating function would both have to be small.

Unfortunately, we find that in a complex physical model that learns by example and
does so with a training sample of limited size, the price for achieving a small bias is a large
variance. For any physical model, it is only when the size of the training sample becomes
infinitely large that we can hope to eliminate both bias and variance at the same time.Ac-
cordingly,we have a bias–variance dilemma, the consequence of which is prohibitively slow
convergence (Geman et al., 1992).The bias–variance dilemma may be circumvented if we
are willing to purposely introduce bias, which then makes it possible to eliminate the vari-
ance or to reduce it significantly.Needless to say,we must be sure that the bias built into the
design of the physical model is harmless. In the context of pattern classification, for exam-
ple, the bias is said to be harmless in the sense that it will contribute significantly to the
mean-square error only if we try to infer regressions that are not in the anticipated class.

Explanatory notes on what Fig. 2.5 is depicting:

1. The shaded inner space of the figure is a subset of the outer space:
The outer space represents the ensemble of regression functions .
The inner space represents the ensemble of approximating functions .

2. The figure shows three points, two fixed and one random:
fixed-point, is averaged over the outer space

second fixed-point, is averaged over the inner space
is randomly distributed inside the inner space

3. Statistical parameters, embodied in the figure:
B(w) � bias, denoting the distance between and .�t[F(x, t)]�[d�x]

F(x, t)
�t[F(x, t)],
�[d�x],

F(�, ŵ)
f(�, w)

F(x, ŵ) = F(x, t)
V(ŵ)B(ŵ)

V(ŵ)
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FIGURE 2.5 Decomposition of the natural measure defined in
Eq. (2.46), into bias and variance terms for linear regression models.

Lav(f(x, w), F(x, ŵ)),

V(w) � variance, denoting the squared distance between and
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In general, the bias must be designed for each specific application of interest. A
practical way of achieving such an objective is to use a constrained network architecture,
which usually performs better than a general-purpose architecture.

2.8 THE INSTRUMENTAL-VARIABLES METHOD

In studying the linear regression model, first from the perspective of Bayesian theory in
Section 2.3 and then from the perspective of the method of least squares in Section 2.4,
we pointed out that both approaches yield the same solution for the parameter vector
w of the unknown stochastic environment depicted in Fig. 2.1, namely, Eq. (2.29) for the
regularized linear regression model and Eq. (2.32) for the unregularized version. Both
of these formulas were derived for a Gaussian environment, on the premise that the re-
gressor (i.e., the input signal) x and the desired response d are both noiseless. What if,
however, we find that the regressor x can be observed only in the presence of additive
noise, as could happen in practice? That is, the noisy regressor is now defined by

(2.50)

where is the measurement noise associated with the observation of xi in the ith real-
ization of the training sample t. If we were to apply the unregularized formula of
Eq. (2.32), we would obtain a modified solution for the parameter vector w of the un-
known stochastic environment:

(2.51)

where zz is the time-averaged correlation function of the noisy regressor z and dz is
the corresponding time-averaged cross-correlation function between the desired response
d and z. To simplify matters, we have ignored the dependence of these two correlation
functions on the size of the training sample.Assuming that the measurement noise vec-
tor v is white noise with zero mean and correlation matrix , where I is the identity ma-
trix, we obtain the following correlation functions:

and

Correspondingly, the maximum-likelihood estimator assumes the new form

(2.52)

which, in mathematical terms, is identical to the MAP formula of Eq. (2.29) with the
regularization parameter 
 set equal to the noise variance σ2

v. This observation leads us
to make the following statement:

The presence of additive noise in the regressor z (with the right noise variance) has the ben-
eficial effect of stabilizing the maximum-likelihood estimator, but at the expense of intro-
ducing a bias into the solution.

This is quite an ironic statement: The addition of noise acts as a regularizer (stabilizer)!

ŵML = (R̂xx + ��
2I)-1r̂dx

r̂dz = r̂dx

R̂zz = R̂xx + ��
2I

��
2I

r̂R̂

ŵML = R̂-1
zz r̂dz

�i

zi = xi + �i



Suppose, however, the requirement is to produce a solution for the unknown
parameter vector w that is desirably asymptotically unbiased. In such a situation, we
may resort to the method of instrumental variables (Young, 1984). This method relies
on the introduction of a set of instrumental variables, denoted by the vector that has
the same dimensionality as the noisy regressor z and satisfies the following two 
properties:

Property 1. The instrumental vector is highly correlated with the noiseless
regressor x, as shown by

(2.53)

where xj is the jth element of the noiseless regressor x and is the kth element of the
instrumental vector .

Property 2. The instrumental vector and the measurement noise vector v are
statistically independent, as shown by

(2.54)

Equipped with the instrumental vector that satisfies these two properties, we compute
the following correlation functions:

1. The noisy regressor z is correlated with the instrumental vector , obtaining the
cross-correlation matrix

(2.55)

where zi is the ith regressor of the noisy training sample {zi, di}
N
i�1, and is the

corresponding instrumental vector.
2. The desired response d is correlated with the instrumental vector , obtaining the

cross-correlation vector

(2.56)

Given these two correlation measurements, we then use the modified formula

(2.57)

for computing an estimate of the unknown parameter vector w (Young, 1984). Un-
like the ML solution of Eq. (2.51), the modified formula of Eq. (2.57), based on the
method of instrumental variables, provides an asymptotically unbiased estimate of
the unknown parameter vector w; see Problem 2.7.

 = a aN
i = 1
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x̂id i b
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In applying the method of instrumental variables, however, the key issue is
how to obtain or generate variables that satisfy Properties 1 and 2. It turns out
that in time-series analysis, the resolution of this issue is surprisingly straight-
forward (Young, 1984).

2.9 SUMMARY AND DISCUSSION

In this chapter, we studied the method of least squares for linear regression, which is well
established in the statistics literature. The study was presented from two different, yet
complementary, viewpoints:

• Bayesian theory, where the maximum a posteriori estimate of a set of unknown
parameters is the objective of interest. This approach to parameter estimation
requires knowledge of the prior distribution of the unknown parameters.The pre-
sentation was demonstrated for a Gaussian environment.

• Regularization theory, where the cost function to be minimized with respect to the
unknown parameters consists of two components: the squared explanational errors
summed over the training data, and a regularizing term defined in terms of the
squared Euclidean norm of the parameter vector.

For the special case of an environment in which the prior distribution of the unknown
parameters is Gaussian with zero mean and variance σ2

w, it turns out that the regular-
ization parameter 
 is inversely proportional to σ2

w.The implication of this statement is
that when σ2

w is very large (i.e., the unknown parameters are uniformly distributed over
a wide range), the formula for finding the estimate of the parameter vector w is defined
by the normal equation

where xx is the time-averaged correlation matrix of the input vector x and is the cor-
responding time-averaged cross-correlation vector between the input vector x and the
desired response d. Both correlation parameters are computed using the training sam-
ple {xi, di}

N
i�1 and are therefore dependent on its sample size N. Furthermore, this for-

mula is identical to the solution obtained using the maximum-likelihood method that
assumes a uniform distribution for the prior.

We also discussed three other important issues:

• The minimum-description-length (MDL) criterion for model-order selection (i.e.,
the size of the unknown parameter vector in a linear regression model).

• The bias–variance dilemma, which means that in parameter estimation (involv-
ing the use of a finite sample size) we have the inevitable task of trading off the
variance of the estimate with the bias; the bias is defined as the difference be-
tween the expected value of the parameter estimate and the true value, and the
variance is a measure of the “volatility” of the estimate around the expected value.

• The method of instrumental variables, the need for which arises when the ob-
servables in the training sample are noisy; such a situation is known to arise in
practice.

r̂ dxR̂

ŵ = R̂-1
xx r̂dx
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Problems 89

NOTES AND REFERENCES

1. Regression models can be linear or nonlinear. Linear regression models are dis-
cussed in depth in the classic book by Rao (1973). Nonlinear regression models are
discussed in Seber and Wild (1989).

2. For a highly readable account of Bayesian theory, see Robert (2001).

3. For a detailed discussion of the method of least squares, see Chapter 8 of Haykin
(2002).

PROBLEMS

2.1. Discuss the basic differences between the maximum a posteriori and maximum-
likelihood estimates of the parameter vector in a linear regression model.

2.2. Starting with the cost function of Eq. (2.36), e(w), derive the formula of 
Eq. (2.29) by minimizing the cost function with respect to the unknown para-
meter vector w.

2.3. In this problem, we address properties of the least-squares estimator based on the
linear regression model of Fig. 2.1:

Property 1. The least-squares estimate

is unbiased, provided that the expectational error ε in the linear regression
model of Fig. 2.1 has zero mean.

Property 2. When the expectational error ε is drawn from a zero-mean white-
noise process with variance σ2, the covariance matrix of the least-squares estimate 
equals

Property 3. The estimation error

produced by the optimized method of least squares is orthogonal to the estimate
of the desired response, denoted by ; this property is a corollary to the principle
of orthogonality. If we were to use geometric representations of d, , and eo, then
we would find that the “vector” representing eo, is perpendicular (i.e., normal) to
that representing ; indeed it is in light of this geometric representation that the
formula

is called the normal equation.

Starting with the normal equation, prove each of these three properties under the
premise that and are time-averaged correlation functions.r̂dxR̂xx

R̂xxŵ = r̂dx

d̂

d̂
d̂

eo = d - ŵTx

�2R̂-1
xx .

ŵ

ŵ = R-1
xxrdx
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2.4. Let denote the ensemble-averaged correlation function of the regressor x, and let rdx de-
note the corresponding ensemble-averaged cross-correlation vector between the regressor
x and response d; that is,

Referring to the linear regression model of Eq. (2.3), show that minimization of the mean-
square error 

leads to the Wiener–Hopf equation

where w is the parameter vector of the regression model. Compare this equation with the
normal equation of Eq. (2.33).

2.5. Equation (2.47) expresses the natural measure of the effectiveness of the approximating
function as a predictor of the desired response d. This expression is made up of two
components, one defining the squared bias and the other defining the variance. Derive this
expression, starting from Eq. (2.46)

2.6. Elaborate on the following statement:
A network architecture, constrained through the incorporation of prior knowledge, ad-
dresses the bias–variance dilemma by reducing variance at the expense of increased bias.

2.7. The method of instrumental variables described in Eq. (2.57) provides an asymptotically
unbiased estimate of the unknown parameter vector ; that is,

Prove the validity of this statement, assuming joint ergodicity of the regressor x and
response d.

COMPUTER EXPERIMENT

2.8. Repeat the pattern-classification experiment described in Section 2.5, this time setting the
two moons at the very edge of linear separability, that is, d � 0. Comment on your results,
and compare them with those obtained in Problem 1.6, involving the perceptron.

2.9. In performing the experiments in Section 2.5 and Problem 2.8, there was no regularization
included in the method of least squares. Would the use of regularization have made a dif-
ference in the performance of the method of least squares?

To substantiate your response to this question, repeat the experiment of Problem 2.7, this
time using the regularized least-squares algorithm.

lim
N S q

ŵ(N) = w

ŵ(N)

F(x, ŵ)

Rxxw = rdx

J(w) = �[�2]

rdx = �[dx]

Rxx = �[xxT]

Rxx



ORGANIZATION OF THE CHAPTER

In this chapter, we describe a highly popular on-line learning algorithm known as the
least-mean-square (LMS) algorithm, which was developed by Widrow and Hoff in 1960.

The chapter is organized as follows:

1. Section 3.1 is introductory, followed by Section 3.2 that sets the stage for the rest of the
chapter by describing a linear discrete-time filter of finite-duration impulse response.

2. Section 3.3 reviews two unconstrained optimization techniques: the method of steepest
descent and Newton’s method.

3. Section 3.4 formulates the Wiener filter, which is optimum in the mean-square-error
sense.Traditionally, the average performance of the LMS algorithm is judged against
the Wiener filter.

4. Section 3.5 presents the derivation of the LMS algorithm. Section 3.6 portrays a modi-
fied form of the LMS algorithm as a Markov model.Then, to prepare the way for study-
ing the convergence behavior of the LMS algorithm,Section 3.7 introduces the Langevin
equation, rooted in unstable thermodynamics. The other tool needed for convergence
analysis of the algorithm is Kushner’s method of direct averaging; this method is discussed
in Section 3.8. Section 3.9 presents a detailed statistical analysis of the algorithm; most
importantly, it shows that the statistical behavior of the algorithm (using a small learn-
ing-rate parameter) is, in fact, the discrete-time version of the Langevin equation.

5. Section 3.10 presents a computer experiment validating the small learning-rate theory
of the LMS algorithm. Section 3.11 repeats the pattern-classification experiment of
Section 1.5 on the perceptron, this time using the LMS algorithm.

6. Section 3.12 discusses the virtues and limitations of the LMS algorithm. Section 3.13
discusses the related issue of learning-rate annealing schedules.

Section 3.14 provides a summary and discussion that conclude the chapter.

3.1 INTRODUCTION

Rosenblatt’s perceptron, discussed in Chapter 1, was the first learning algorithm for
solving a linearly separable pattern-classification problem.The least-mean-square (LMS)
algorithm, developed by Widrow and Hoff (1960), was the first linear adaptive-filtering
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algorithm for solving problems such as prediction and communication-channel equal-
ization. Development of the LMS algorithm was indeed inspired by the perceptron.
Though different in applications, these two algorithms share a common feature: They
both involve the use of a linear combiner, hence the designation “linear.”

The amazing thing about the LMS algorithm is that it has established itself not
only as the workhorse for adaptive-filtering applications, but also as the benchmark
against which other adaptive-filtering algorithms are evaluated.The reasons behind this
amazing track record are multifold:

• In terms of computational complexity, the LMS algorithm’s complexity is linear
with respect to adjustable parameters, which makes the algorithm computationally
efficient, yet the algorithm is effective in performance.

• The algorithm is simple to code and therefore easy to build.
• Above all, the algorithm is robust with respect to external disturbances.

From an engineering perspective, these qualities are all highly desirable. It is therefore
not surprising to see that the LMS algorithm has withstood the test of time.

In this chapter, we derive the LMS algorithm in its most basic form and discuss its
virtues and limitations. Most importantly, the material presented herein sets the stage for
the back-propagation algorithm to be discussed in the next chapter.

3.2 FILTERING STRUCTURE OF THE LMS ALGORITHM

Figure 3.1 shows the block diagram of an unknown dynamic system that is stimulated
by an input vector consisting of the elements x1(i), x2(i), ..., xM(i), where i denotes the
instant of time at which the stimulus (excitation) is applied to the system.The time index

FIGURE 3.1 (a) Unknown dynamic 
system. (b) Signal-flow graph of
adaptive model for the system; the
graph embodies a feedback loop set in
color.
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i � 1, 2, ..., n. In response to this stimulus, the system produces an output denoted by y(i).
Thus, the external behavior of the system is described by the data set

t: (3.1)

where

(3.2)

The sample pairs composing t are identically distributed according to an unknown
probability law. The dimension M pertaining to the input vector x(i) is referred to as
the dimensionality of the input space, or simply as the input dimensionality.

The stimulus vector x(i) can arise in one of two fundamentally different ways, one
spatial and the other temporal:

x(i) = [x1(i), x2(i), ..., xM(i)]T

{x(i), d(i); i = 1, 2, ...., n, ...}

Section 3.2 Filtering Structure of the LMS Algorithm 93

• The M elements of x(i) originate at different points in space; in this case, we speak
of x(i) as a snapshot of data.

• The M elements of x(i) represent the set of present and (M - 1) past values of
some excitation that are uniformly spaced in time.

The problem we address is how to design a multiple-input–single-output model
of the unknown dynamic system by building it around a single linear neuron. The
neural model operates under the influence of an algorithm that controls necessary
adjustments to the synaptic weights of the neuron, with the following points in
mind:

• The algorithm starts from an arbitrary setting of the neuron’s synaptic weights.
• Adjustments to the synaptic weights in response to statistical variations in the sys-

tem’s behavior are made on a continuous basis (i.e time is incorporated into the
constitution of the algorithm).

• Computations of adjustments to the synaptic weights are completed inside an
interval that is one sampling period long.

The neural model just described is referred to as an adaptive filter. Although the
description is presented in the context of a task clearly recognized as one of system
identification, the characterization of the adaptive filter is general enough to have
wide application.

Figure 3.1b shows a signal-flow graph of the adaptive filter. Its operation consists
of two continuous processes:

1. Filtering process, which involves the computation of two signals:
• an output, denoted by y(i), that is produced in response to the M elements of

the stimulus vector x(i), namely, x1(i), x2(i), ..., xM(i);
• an error signal, denoted by e(i), that is obtained by comparing the output y(i)

with the corresponding output d(i) produced by the unknown system. In effect,
d(i) acts as a desired response, or target, signal.

2. Adaptive process, which involves the automatic adjustment of the synaptic weights
of the neuron in accordance with the error signal e(i).



Thus, the combination of these two processes working together constitutes a feedback
loop acting around the neuron, as shown in Fig. 3.1b.

Since the neuron is linear, the output y(i) is exactly the same as the induced local
field v(i); that is,

(3.3)

where w1(i), w2(i), ..., wM(i) are the M synaptic weights of the neuron, measured at
time i. In matrix form, we may express y(i) as an inner product of the vectors x(i)
and w(i) as

(3.4)

where

Note that the notation for a synaptic weight has been simplified here by not including
an additional subscript to identify the neuron, since we have only a single neuron to
deal with. This practice is followed throughout the book, whenever a single neuron is
involved. The neuron’s output y(i) is compared with the corresponding output d(i)
received from the unknown system at time i. Typically, y(i) is different from d(i); hence,
their comparison results in the error signal

(3.5)

The manner in which the error signal e(i) is used to control the adjustments to the neu-
ron’s synaptic weights is determined by the cost function used to derive the adaptive-
filtering algorithm of interest. This issue is closely related to that of optimization. It is
therefore appropriate to present a review of unconstrained-optimization methods.
The material is applicable not only to linear adaptive filters, but also to neural networks
in general.

3.3 UNCONSTRAINED OPTIMIZATION: A REVIEW

Consider a cost function e(w) that is a continuously differentiable function of some
unknown weight (parameter) vector w. The function e(w) maps the elements of w into
real numbers. It is a measure of how to choose the weight (parameter) vector w of an
adaptive-filtering algorithm so that it behaves in an optimum manner. We want to find
an optimal solution w* that satisfies the condition

e e (3.6)

That is, we need to solve an unconstrained-optimization problem, stated as follows:

e .

The necessary condition for optimality is

e (3.7)(w*) = 0§

(w) with respect to the weight vector wMinimize the cost function

(w)(w*) �

e(i) = d(i) - y(i)

w(i) = [w1(i), w2(i), ..., wM(i)]T

y(i) = xT(i)w(i)

y(i) = v(i) = a
M

k = 1
wk(i)xk(i)

94 Chapter 3 The Least-Mean-Square Algorithm



where § is the gradient operator,

(3.8)

and is the gradient vector of the cost function,

(3.9)

(Differentiation with respect to a vector is discussed in Note 1 at the end of this chapter.)
A class of unconstrained-optimization algorithms that is particularly well suited for

the design of adaptive filters is based on the idea of local iterative descent:

Starting with an initial guess denoted by w(0), generate a sequence of weight vectors w(1),
w(2), . . ., such that the cost function e(w) is reduced at each iteration of the algorithm, as
shown by

(3.10)

where w(n) is the old value of the weight vector and w(n � 1) is its updated value.

We hope that the algorithm will eventually converge onto the optimal solution w*. We
say “hope” because there is a distinct possibility that the algorithm will diverge (i.e.,
become unstable) unless special precautions are taken.

In this section, we describe three unconstrained-optimization methods that rely
on the idea of iterative descent in one form or another (Bertsekas, 1995).

Method of Steepest Descent

In the method of steepest descent, the successive adjustments applied to the weight vec-
tor w are in the direction of steepest descent, that is, in a direction opposite to the gradient
vector . For convenience of presentation, we write

(3.11)

Accordingly, the steepest-descent algorithm is formally described by

(3.12)

where � is a positive constant called the stepsize, or learning-rate, parameter, and g(n) is
the gradient vector evaluated at the point w(n). In going from iteration n to n � 1, the
algorithm applies the correction

(3.13)

Equation (3.13) is in fact a formal statement of the error-correction rule described in the
introductory chapter.

To show that the formulation of the steepest-descent algorithm satisfies the con-
dition of Eq. (3.10) for iterative descent, we use a first-order Taylor series expansion
around w(n) to approximate as

e(w(n + 1)) L e(w(n)) + gT(n)¢w(n)

e(w(n + 1))

= -�g(n)

¢w(n) = w(n + 1) - w(n)

w(n + 1) = w(n) - �g(n)

g = §e(w)

§e(w)

e(w(n + 1)) 6 e(w(n))

§e(w) = c 0e
0w1

,
0e
0w2

, ..., 
0e

0wM
d T(w)§e

§ = c 0
0w1

,
0

0w2
, ..., 

0
0wM
d T
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the use of which is justified for small �. Substituting Eq. (3.13) into this approximate
relation yields

which shows that, for a positive learning-rate parameter �, the cost function is decreased
as the algorithm progresses from one iteration to the next.The reasoning presented here
is approximate in that this end result is true only for small enough learning rates.

The method of steepest descent converges to the optimal solution w* slowly. More-
over, the learning-rate parameter � has a profound influence on its convergence behavior:

• When � is small, the transient response of the algorithm is overdamped, in that
the trajectory traced by w(n) follows a smooth path in the w-plane, as illustrated
in Fig. 3.2a.

• When � is large, the transient response of the algorithm is underdamped, in that the
trajectory of w(n) follows a zigzagging (oscillatory) path, as illustrated in Fig. 3.2b.

• When � exceeds a certain critical value, the algorithm becomes unstable (i.e., it
diverges).

Newton’s Method

For a more elaborate optimization technique, we may look to Newton’s method, the basic
idea of which is to minimize the quadratic approximation of the cost function 
around the current point w(n); this minimization is performed at each iteration of the
algorithm. Specifically, using a second-order Taylor series expansion of the cost func-
tion around the point w(n), we may write

(3.14)

As before, g(n) is the M-by-1 gradient vector of the cost function evaluated at
the point w(n).The matrix H(n) is the m-by-m Hessian of , also evaluated at w(n).
The Hessian of is defined by

= ≥
02e

0w2
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1
2
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FIGURE 3.2 Trajectory of the method of steepest descent in a two-dimensional space for
two different values of learning-rate parameter: (a) small � (b) large �. The coordinates
w1 and w2 are elements of the weight vector w; they both lie in thew-plane.



Equation (3.15) requires the cost function to be twice continuously differentiable
with respect to the elements of w. Differentiating1 Eq. (3.14) with respect to ∆w, we
minimize the resulting change when

Solving this equation for ∆w(n) yields

That is,

(3.16)

where H-1(n) is the inverse of the Hessian of .
Generally speaking, Newton’s method converges quickly asymptotically and does

not exhibit the zigzagging behavior that sometimes characterizes the method of steep-
est descent. However, for Newton’s method to work, the Hessian H(n) has to be a positive
definite matrix for all n. Unfortunately, in general, there is no guarantee that H(n) is
positive definite at every iteration of the algorithm. If the Hessian H(n) is not positive
definite, modification of Newton’s method is necessary (Powell, 1987; Bertsekas, 1995).
In any event, a major limitation of Newton’s method is its computational complexity.

Gauss–Newton Method

To deal with the computational complexity of Newton’s method without seriously
compromising its convergence behavior, we may use the Gauss–Newton method. To
apply this method, we adopt a cost function that is expressed as the sum of error
squares. Let

(3.17)

where the scaling factor is included to simplify matters in subsequent analysis. All the
error terms in this formula are calculated on the basis of a weight vector w that is fixed
over the entire observation interval 1 � i � n.

The error signal e(i) is a function of the adjustable weight vector w. Given an oper-
ating point w(n), we linearize the dependence of e(i) on w by introducing the new term

Equivalently, by using matrix notation, we may write

(3.18)

where e(n) is the error vector

e(n) = [e(1), e(2), ..., e(n)]T

e¿(n, w) = e(n) + J(n) (w - w(n))

e¿(i, w) = e(i) + c 0e(i)

0w
d T

w = w(n)
* (w - w(n)),  i = 1, 2, ..., n

1
2

e(w) =
1
2a

n

i = 1
e2(i)

e(w)

= w(n) - H-1(n)g(n)

w(n + 1) = w(n) + ¢w(n)

¢w(n) = -H-1(n)g(n)

g(n) + H(n)¢w(n) = 0

¢e(w)

e(w)
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and J(n) is the n-by-m Jacobian of e(n):

(3.19)

The Jacobian J(n) is the transpose of the m-by-n gradient matrix , where

The updated weight vector w(n � 1) is now defined by

(3.20)

Using Eq. (3.18) to evaluate the squared Euclidean norm of e�(n, w), we get

Hence, differentiating this expression with respect to w and setting the result equal to
zero, we obtain

Solving this equation for w, we may thus write, in light of Eq. 3.20,

(3.21)

which describes the pure form of the Gauss–Newton method.
Unlike Newton’s method, which requires knowledge of the Hessian of the cost

function , the Gauss–Newton method requires only the Jacobian of the error
vector e(n). However, for the Gauss–Newton iteration to be computable, the matrix
product JT(n)J(n) must be nonsingular.

With regard to the latter point, we recognize that JT(n)J(n) is always nonnegative
definite. To ensure that it is nonsingular, the Jacobian J(n) must have row rank n; that
is, the n rows of J(n) in Eq. (3.19) must be linearly independent. Unfortunately, there is
no guarantee that this condition will always hold. To guard against the possibility that
J(n) is rank deficient, the customary practice is to add the diagonal matrix δI to the
matrix JT(n)J(n), where I is the identity matrix.The parameter δ is a small positive con-
stant chosen to ensure that

JT(n)J(n) + �I is positive definite for all n

e(n)

w(n + 1) = w(n) - (JT(n)J(n))-1JT(n)e(n)

JT(n)e(n) + JT(n)J(n)(w - w(n)) = 0

+
1
2

(w - w(n))TJT(n)J(n)(w - w(n))

1
2
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On this basis, the Gauss–Newton method is implemented in the slightly modified form

(3.22)

The effect of the added term δI is progressively reduced as the number of iterations, n,
is increased. Note also that the recursive equation (3.22) is the solution of the modified
cost function

(3.23)

where w(n) is the current value of the weight vector w(i).
In the literature on signal processing, the addition of the term δI in Eq. (3.22) is

referred to as diagonal loading. The addition of this term is accounted for by expanding
the cost function in the manner described in Eq. (3.23), where we now have two

terms (ignoring the scaling factor ):

• The first term, , is the standard sum of squared errors, which depends on

the training data.
• The second term contains the squared Euclidean norm, , which

depends on the filter structure. In effect, this term acts as a stabilizer.

The scaling factor δ is commonly referred to as a regularization parameter, and the result-
ing modification of the cost function is correspondingly referred to as structural regu-
larization. The issue of regularization is discussed in great detail in Chapter 7.

3.4 THE WIENER FILTER

The ordinary least-squares estimator was discussed in Chapter 2, where the traditional
approach to minimization was used to find the least-squares solution from an observa-
tion model of the environment.To conform to the terminology adopted in this chapter,
we will refer to it as the least-squares filter. Moreover, we will rederive the formula for
this filter by using the Gauss–Newton method.

To proceed then, we use Eqs. (3.3) and (3.4) to define the error vector as

(3.24)

where d(n) is the n-by-1 desired response vector,

and X(n) is the n-by-M data matrix,

Differentiating the error vector e(n) with respect to w(n) yields the gradient matrix

§e(n) = -XT(n)

X(n) = [x(n), x(2), ..., x(n)]T

d(n) = [d(1), d(2), ..., d(n)]T

= d(n) - X(n)w(n)

e(n) = d(n) - [x(1), x(2), ... , x(n)]Tw(n)

7w - w(n) 7 2
gn

i = 1
e2(i)

1
2

e(w)

e(w) =
1
2
e an

i = 1
e2(i) + � 7w - w(n) 7 2 f

w(n + 1) = w(n) - (JT(n)J(n) + �I)-1JT(n)e(n)

100 Chapter 3 The Least-Mean-Square Algorithm



Correspondingly, the Jacobian of e(n) is

(3.25)

Since the error equation (3.18) is already linear in the weight vector w(n), the
Gauss–Newton method converges in a single iteration, as shown here. Substituting Eqs.
(3.24) and (3.25) into (3.21) yields

(3.26)

The term (XT(n)X(n))-1XT(n) is called the pseudoinverse of the data matrix X(n); that is,2

(3.27)

Hence, we may rewrite Eq. (3.26) in the compact form

(3.28)

This formula represents a convenient way of stating the following:

The weight vector w(n + 1) solves the linear least-squares problem, defined over an observa-
tion interval of duration n, as the product of two terms: the pseudoinverse X�(n) and the desired
response vector d(n).

Wiener Filter: Limiting Form of the Least-Squares 
Filter for an Ergodic Environment

Let wo denote the limiting form of the least-squares filter as the number of observations, n,
is allowed to approach infinity. We may then use Eq. (3.26) to write

(3.29)

Suppose now the input vector x(i) and the corresponding desired response d(i)
are drawn from a jointly ergodic environment that is also stationary. We may then sub-
stitute time averages for ensemble averages. By definition, the ensemble-averaged form
of the correlation matrix of the input vector x(i) is

(3.30)

and, correspondingly, the ensemble-averaged form of the cross-correlation vector
between the input vector x(i) and the desired response vector d(i) is

(3.31)

where � is the expectation operator. Therefore, under the ergodicity assumption, we
may now write

Rxx = lim
n S q

1
n

X(n)XT(n)

rdx = �[x(i)d(i)]

Rxx = �[x(i)xT(i)]

= lim
n S q

a 1
n

XT(n)X(n) b -1

* lim
n S q

1
n

XT(n)d(n)

= lim
n S q

(XT(n)X(n))-1XT(n)d(n)

wo = lim
n S q

w(n + 1)

w(n + 1) = X+(n)d(n)

X+(n) = (XT(n)X(n))-1XT(n)

= (XT(n)X(n))-1XT(n)d(n)

w(n + 1) = w(n) + (XT(n)X(n))-1XT(n)(d(n) - X(n)w(n))

J(n) = -X(n)
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and

Accordingly, we may recast Eq. (3.29) in terms of ensemble-averaged correlation
parameters as

(3.32)

where R-1
xx is the inverse of the correlation matrix Rxx. The formula of Eq. (3.32) is the

ensemble-averaged version of the least-squares solution defined in Eq. (2.32).
The weight vector wo is called the Wiener solution to the optimum linear filtering

problem (Widrow and Stearns, 1985; Haykin, 2002). Accordingly, we may make the
statement:

For an ergodic process, the least-squares filter asymptotically approaches the Wiener filter as
the number of observations approaches infinity.

Designing the Wiener filter requires knowledge of the second-order statistics: the
correlation matrix Rxx of the input vector x(n), and the cross-correlation vector rxd

between x(n) and the desired response d(n). However, this information is not available
when the environment in which the filter operates is unknown. We may deal with such
an environment by using a linear adaptive filter, adaptive in the sense that the filter is
able to adjust its free parameters in response to statistical variations in the environment.
A highly popular algorithm for doing this kind of adjustment on a continuing-time basis
is the least-mean-square algorithm, discussed next.

3.5 THE LEAST-MEAN-SQUARE ALGORITHM

The least-mean-square (LMS) algorithm is configured to minimize the instantaneous
value of the cost function,

(3.33)

where e(n) is the error signal measured at time n. Differentiating with respect to
the weight vector yields

(3.34)

As with the least-squares filter, the LMS algorithm operates with a linear neuron, so we
may express the error signal as

(3.35)

Hence,

0e(n)
0ŵ(n)

= -x(n)

e(n) = d(n) - xT(n)ŵ(n)

0e(ŵ)

0ŵ
= e(n)

0e(n)

0w

ŵ
e(ŵ)

e(ŵ) =
1
2

e2(n)

wo = R-1
xxrdx

rdx = lim
n S q

XT(n)d(n)
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and

Using this latter result as the instantaneous estimate of the gradient vector, we may write

(3.36)

Finally, using Eq. (3.36) for the gradient vector in Eq. (3.12) for the method of steepest
descent, we may formulate the LMS algorithm as follows:

(3.37)

It is also noteworthy that the inverse of the learning-rate parameter � acts as a measure
of the memory of the LMS algorithm: The smaller we make �, the longer the memory
span over which the LMS algorithm remembers past data will be. Consequently, when �
is small, the LMS algorithm performs accurately, but the convergence rate of the algo-
rithm is slow.

In deriving Eq. (3.37), we have used in place of w(n) to emphasize the fact
that the LMS algorithm produces an instantaneous estimate of the weight vector that
would result from the use of the method of steepest-descent.As a consequence, in using
the LMS algorithm we sacrifice a distinctive feature of the steepest-descent algorithm.
In the steepest-descent algorithm, the weight vector w(n) follows a well-defined tra-
jectory in the weight space w for a prescribed �. In contrast, in the LMS algorithm, the
weight vector traces a random trajectory. For this reason, the LMS algorithm is
sometimes referred to as a “stochastic gradient algorithm.”As the number of iterations
in the LMS algorithm approaches infinity, performs a random walk (Brownian
motion) about the Wiener solution wo.The important point to note, however, is the fact
that, unlike the method of steepest descent, the LMS algorithm does not require knowl-
edge of the statistics of the environment. This feature of the LMS algorithm is impor-
tant from a practical perspective.

A summary of the LMS algorithm, based on Eqs. (3.35) and (3.37), is presented in
Table 3.1, which clearly illustrates the simplicity of the algorithm. As indicated in this
table, initialization of the algorithm is done by simply setting the value of the weight
vector .ŵ(0) = 0

ŵ(n)

ŵ(n)

ŵ(n)

ŵ(n + 1) = ŵ(n) + �x(n)e(n)

ĝ(n) = -x(n)e(n)

0e(ŵ)

0ŵ(n)
= -x(n)e(n)
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TABLE 3.1 Summary of the LMS Algorithm

Training Sample: Input signal vector � x(n)
Desired response � d(n)

User-selected parameter: �
Initialization. Set .ŵ(0) = 0
Computation. For 1, 2, ..., computen =

e(n) = d(n) - ŵ T(n)x(n)

ŵ(n + 1) = ŵ(n) + �x(n)e(n)



Signal-Flow Graph Representation of the LMS Algorithm

By combining Eqs. (3.35) and (3.37), we may express the evolution of the weight vector
in the LMS algorithm as

(3.38)

where I is the identity matrix. In using the LMS algorithm, we recognize that

(3.39)

where z-1 is the unit-time delay operator, implying storage. Using Eqs. (3.38) and (3.39),
we may thus represent the LMS algorithm by the signal-flow graph depicted in Fig. 3.3.
This signal-flow graph reveals that the LMS algorithm is an example of a stochastic feed-
back system. The presence of feedback has a profound impact on the convergence behav-
ior of the LMS algorithm.

3.6 MARKOV MODEL PORTRAYING THE DEVIATION OF THE LMS
ALGORITHM FROM THE WIENER FILTER

To perform a statistical analysis of the LMS algorithm, we find it more convenient to
work with the weight-error vector, defined by

(3.40)

where wo is the optimum Wiener solution defined by Eq. (3.32) and is the
corresponding estimate of the weight vector computed by the LMS algorithm. Thus,

ŵ(n)

�(n) = wo - ŵ(n)

ŵ(n) = z-1[ŵ(n + 1)]

= [I - �x(n)xT(n)]ŵ(n) + �x(n)d(n)

ŵ(n + 1) = ŵ(n) + �x(n)[d(n) - xT(n)ŵ(n)]
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FIGURE 3.3 Signal-flow graph
representation of the LMS
algorithm. The graph embodies
feedback depicted in color.



in terms of , assuming the role of a state, we may rewrite Eq. (3.38) in the com-
pact form

(3.41)

Here, we have

(3.42)

where I is the identity matrix.The additive noise term in the right-hand side of Eq. (3.41)
is defined by

(3.43)

where

(3.44)

is the estimation error produced by the Wiener filter.
Equation (3.41) represents a Markov model of the LMS algorithm, with the model

being characterized as follows:

• The updated state of the model, denoted by the vector , depends on the old
state , with the dependence itself being defined by the transition matrix A(n).

• Evolution of the state over time n is perturbed by the intrinsically generated noise
f(n), which acts as a “driving force”.

Figure 3.4 shows a vector-valued signal-flow graph representation of this model. The
branch labeled z-1I represents the memory of the model, with z-1 acting as the unit-time
delay operator, as shown by

(3.45)

This figure highlights the presence of feedback in the LMS algorithm in a more compact
manner than that in Fig. 3.3.

The signal-flow graph of Fig. 3.4 and the accompanying equations provide the
framework for the convergence analysis of the LMS algorithm under the assumption
of a small learning-rate parameter �. However, before proceeding with this analysis, we
will digress briefly to present two building blocks with that goal in mind: the Langevin
equation, presented in Section 3.7, followed by Kushner’s direct-averaging method,
presented in Section 3.8. With those two building blocks in hand, we will then go on
to study convergence analysis of the LMS algorithm in Section 3.9.

z-1[� (n + 1)] = � (n)

� (n)
� (n + 1)

eo(n) = d(n) - wT
ox(n)

f(n) = - �x(n)eo(n)

A(n) = I - �x(n)xT(n)

� (n + 1) = A(n)� (n) + f(n)

� (n)
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FIGURE 3.4 Signal-flow graph
representation of the Markov
model described in Eq. (3.41); the
graph embodies feedback depicted
in color.
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3.7 THE LANGEVIN EQUATION: CHARACTERIZATION 
OF BROWNIAN MOTION

Restating the remarks made towards the end of Section 3.5 in more precise terms
insofar as stability or convergence is concerned, we may say that the LMS algorithm
(for small enough �) never attains a perfectly stable or convergent condition. Rather,
after a large number of iterations, n, the algorithm approaches a “pseudo-equilibrium”
condition, which, in qualitative terms, is described by the algorithm executing Brownian
motion around the Wiener solution.This kind of stochastic behavior is explained nicely
by the Langevin equation of nonequilibrium thermodynamics.3 So, we will make a brief
digression to introduce this important equation.

Let v(t) denote the velocity of a macroscopic particle of mass m immersed in a
viscous fluid. It is assumed that the particle is small enough for its velocity due to ther-
mal fluctuations deemed to be significant. Then, from the equipartition law of thermo-
dynamics, the mean energy of the particle is given by

(3.46)

where kB is Boltzmann’s constant and T is the absolute temperature. The total force exerted
on the particle by the molecules in the viscous fluid is made up of two components:

(i) a continuous damping force equal to -�v(t) in accordance with Stoke’s law, where
� is the coefficient of friction;

(ii) a fluctuating force Ff (t), whose properties are specified on the average.

The equation of motion of the particle in the absence of an external force is therefore
given by

Dividing both sides of this equation by m, we get

(3.47)

where

(3.48)

and

(3.49)

The term Γ(t) is the fluctuating force per unit mass; it is a stochastic force because it depends
on the positions of the incredibly large number of atoms constituting the particle, which
are in a state of constant and irregular motion. Equation (3.47) is called the Langevin
equation, and Γ(t) is called the Langevin force. The Langevin equation, which describes
the motion of the particle in the viscous fluid at all times (if its initial conditions are spec-
ified), was the first mathematical equation describing nonequilibrium thermodynamics.

�(t) =
Ff(t)

m

� =
�

m

dv

dt
= -�v(t) + �(t)

m
dv

dt
= -�v(t) + Ff(t)

1
2

� [v2(t)] =
1
2

kBT  for all continuous time t
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In Section 3.9, we show that a transformed version of the LMS algorithm has the
same mathematical form as the discrete-time version of the Langevin equation. But,
before doing that, we need to describe our next building block.

3.8 KUSHNER’S DIRECT-AVERAGING METHOD

The Markov model of Eq. (3.41) is a nonlinear stochastic difference equation. This equa-
tion is nonlinear because the transition matrix A(n) depends on the outer product
x(n)xT(n) of the input vector x(n). Hence, the dependence of the weight-error vector

on x(n) violates the principle of superposition, which is a requirement for lin-
earity. Moreover, the equation is stochastic because the training sample {x(n), d(n)} is
drawn from a stochastic environment. Given these two realities, we find that a rigorous
statistical analysis of the LMS algorithm is indeed a very difficult task.

However, under certain conditions, the statistical analysis of the LMS algorithm can
be simplified significantly by applying Kushner’s direct-averaging method to the model of
Eq. (3.41). For a formal statement of this method, we write the following (Kushner, 1984):

Consider a stochastic learning system described by the Markov model

where, for some input vector x(n), we have

and the additive noise f(n) is linearly scaled by the learning-rate parameter �. Provided that

• the learning-rate parameter � is sufficiently small, and

• the additive noise f(n) is essentially independent of the state , the state evolution of a
modified Markov model described by the two equations

(3.50)

(3.51)

is practically the same as that of the original Markov model for all n.

The deterministic matrix of Eq. (3.51) is the transition matrix of the modified
Markov model. Note also that we have used the symbol for the state of the mod-
ified Markov model to emphasize the fact that the evolution of this model over time is
identically equal to that of the original Markov model only for the limiting case of a
vanishingly small learning-rate parameter �.

A proof of the statement embodying Eqs. (3.50) and (3.51) is addressed in Prob-
lem 3.7, assuming ergodicity (i.e., substituting time averages for ensemble averages).
For the discussion presented herein, it suffices to say the following:

1. As mentioned previously, when the learning-rate parameter � is small, the LMS
algorithm has a long memory. Hence, the evolution of the updated state
can be traced in time, step by step, all the way back to the initial condition .

2. When � is small, we are justified in ignoring all second- and higher-order
terms in � in the series expansion of .� 0(n + 1)

� (0)
�0(n + 1)

� 0(n)
A(n)

A(n) = I - ��[x(n)xT(n)]

� 0(n + 1) = A(n)� 0(n) + f0(n)

� (n)

A(n) = I - �x(n)xT(n)

� (n + 1) = A(n)�(n) + f(n)

� (n + 1)
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3. Finally, the statement embodied in Eqs. (3.50) and (3.51) is obtained by invoking
ergodicity, whereby ensemble averages are substituted for time agerages.

3.9 STATISTICAL LMS LEARNING THEORY FOR SMALL 
LEARNING-RATE PARAMETER

Now that we are equipped with Kushner’s direct-averaging method, the stage is set for
a principled statistical analysis of the LMS algorithm by making three justifiable
assumptions:

Assumption I: The learning-rate parameter � is small

By making this assumption, we justify the application of Kushner’s direct-averaging
method—hence the adoption of the modified Markov model of Eqs. (3.50) and (3.51)
as the basis for the statistical analysis of the LMS algorithm.

From a practical perspective, the choice of small � also makes sense. In particular,
the LMS algorithm exhibits its most robust behavior with respect to external distur-
bances when � is small; the issue of robustness is discussed in Section 3.12.

Assumption II: The estimation error eo(n) produced 
by the Wiener filter is white.

This assumption is satisfied if the generation of the desired response is described by the
linear regression model

(3.52)

Equation (3.52) is simply a rewrite of Eq. (3.44), which, in effect, implies that the
weight vector of the Wiener filter is matched to the weight vector of the regression
model describing the stochastic environment of interest.

Assumption III: The input vector x(n) and the desired 
response d(n) are jointly Gaussian

Stochastic processes produced by physical phenomena are frequently mechanized
such that a Gaussian model is appropriate—hence the justification for the third
assumption.

No further assumptions are needed for the statistical analysis of the LMS algorithm
(Haykin, 2002, 2006). In what follows, we present a condensed version of that analysis.

Natural Modes of the LMS Algorithm

Let Rxx denote the ensemble-averaged correlation matrix of the input vector x(n), drawn
from a stationary process; that is,

(3.53)Rxx = �[x(n)xT(n)]

d(n) = wT
ox(n) + eo(n)
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Correspondingly, we may express the averaged transition matrix in Eq. (3.51) pertain-
ing to the modified Markov model as

(3.54)

We may therefore expand Eq. (3.50) into the form

(3.55)

where is the addition noise. Henceforth, Eq. (3.55) is the equation on which the sta-
tistical analysis of the LMS algorithm is based.

Natural Modes of the LMS Algorithm

Applying the orthogonality transformation of matrix theory4 to the correlation matrix
Rxx, we write

(3.56)

where Q is an orthogonal matrix whose columns are the eigenvectors of Rxx, and � is a
diagonal matrix whose elements are the associated eigenvalues. Extending the applica-
tion of this transformation to the difference equation Eq. (3.55) yields the  correspond-
ing system of decoupled first-order equations (Haykin, 2002, 2006)

(3.57)

where M is the dimensionality of the weight vector . Moreover, vk(n) is the kth
element of the transformed weight-error vector

(3.58)

and, correspondingly, is the kth element of the transformed noise vector

(3.59)

More specifically, is the sample function of a white-noise process of zero mean and�k(n)

	(n) = QTf0(n)

�k(n)

v(n) = QT� 0(n)

ŵ(n)

vk(n + 1) = (1 - �
k)vk(n) + �k(n),  k = 1, 2, ..., M

QTRxxQ = �

f0(n)

� 0(n + 1) = (I - �Rxx)� 0(n) + f0(n)

= [I - �Rxx]
A = �[I - �x(n)xT(n)]
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variance µ2Jmin
k,where Jmin is the minimum mean-square error produced by the Wiener
filter. In effect, the variance of the zero-mean driving force for the kth difference
equation Eq. (3.57) is proportional to the kth eigenvalue of the correlation matrix Rxx,
namely, 
k.

Define the difference

(3.60)

We may then recast Eq. (3.57) in the form

(3.61)

The stochastic equation Eq. (3.61) is now recognized as the discrete-time version of the
Langevin equation Eq. (3.47). In particular, as we compare these two equations, term by
term, we construct the analogies listed in Table 3.2. In light of this table, we may now
make the following important statement:

¢vk(n) = -�
kvk(n) + �k(n)  for k = 1, 2, ..., M

¢vk(n) = vk(n + 1) - vk(n)  for k = 1, 2, ..., M



The convergence behavior of the LMS filter resulting from application of the orthogonality
transformation to the difference equation Eq. (3.55) is described by a system of M decou-
pled Langevin equations whose kth component is characterized as follows:
• damping force is defined by �
kvk(n);
• Langevin force �k(n) is described by a zero-mean white-noise process with the variance

�2Jmin
k.

Most important, the Langevin force k(n) is responsible for the nonequilibrium behavior
of the LMS algorithm, which manifests itself in the form of Brownian motion performed
by the algorithm around the optimum Wiener solution after a large enough number of
iterations n. It must, however, be stressed that the findings summarized in Table 3.2 and
the foregoing statement rest on the premise that the learning-rate parameter � is small.

Learning Curves of the LMS Algorithm

Following through the solution of the transformed difference equation Eq. (3.57), we
arrive at the LMS learning curve described by Haykin, (2002, 2006),

(3.62)

where

is the mean-square error and vk(0) is the initial value of the kth element of the trans-
formed vector v(n). Under the assumption that the learning-rate parameter � is small,
Eq. (3.62) simplifies to

(3.63)

The practical validity of the small-learning-rate-parameter theory presented in
this section is demonstrated in the computer experiment presented next.

3.10 COMPUTER EXPERIMENT I: LINEAR PREDICTION

The objective of this experiment is to verify the statistical learning theory of the LMS
algorithm described in Section 3.9, assuming a small learning-rate parameter �.

J(n) L Jmin +
�Jmin

2 a
M

k = 1

k + a

M

k = 1

k a �vk(0)�2 -

�Jmin

2
b (1 - �
k)2n

J(n) = �[�e(n)�2]

J(n) = Jmin + �Jmina
M

k = 1


k

2 - �
k
+ a

M

k = 1

k a �vk(0)�2 -

�Jmin

2 - �
k
b (1 - �
k)2n

�
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TABLE 3.2 Analogies between the Langevin equation (in continuous time)
and the transformed LMS evolution (in discrete time)

Langevin equation Eq. (3.47) LMS evolution Eq. (3.61)

(acceleration)
dv(t)

dt
∆vk(n)

γ v(t) (damping force) �
kvk(n)
�k(n)Γ(t) (stochastic driving force)



For the experiment, we consider a generative model defined by

(3.64)

which represents an autoregressive (AR) process of order one. The model being of first
order, a is the only parameter of the model.The explanational error is drawn from
a zero-mean white-noise process of variance σ2

e.The generative model is parameterized
as follows:

To estimate the model parameter a, we use the LMS algorithm characterized by
the learning-rate parameter � � 0.001. Starting with the initial condition , we
apply the scalar version of Eq. (3.35), where the estimation error

and where is the estimate of a produced by the LMS algorithm at time n. Then, per-
forming 100 statistically independent application of the LMS algorithm, we plot the
ensemble-averaged learning curve of the algorithm.The solid (randomly varying) curve
plotted in Fig. 3.5 for 5,000 iterations is the result of this ensemble-averaging operation.

In Fig. 3.5, we have also included the result of computing the ensemble-averaged
learning curve by using the theoretically derived formula of Eq. (3.63), assuming a small �.
It is remarkable to see perfect agreement between theory and practice, as evidenced by

â (n)

e(n) = x(n) - â(n)x(n - 1)

ŵ(0) = 0

�2
x = 0.995

�2
� = 0.02

a = 0.99

�(n)

x(n) = ax(n - 1) + �(n)
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FIGURE 3.5 Experimental
verification of the small-
learning-rate-parameter
theory of the LMS algorithm
applied to an autoregressive
process of order one.
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the results plotted in Fig. 3.6. Indeed, this remarkable agreement should be viewed as the
confirmation of two important theoretical principles:

1. Kushner’s method may be used to tackle the theoretical analysis of the LMS learn-
ing behavior under the assumption of a small learning-rate parameter.

2. The LMS algorithm’s learning behavior may be explained as an instance of
Langevin’s equation.

3.11 COMPUTER EXPERIMENT II: PATTERN CLASSIFICATION

For the second experiment on the LMS algorithm, we study the algorithm’s application
to the double-moon configuration pictured in Fig. 1.8. To be more specific, the perfor-
mance of the algorithm is evaluated for two settings of the double-moon configuration:

(i) d � 1, corresponding to linear separability;
(ii) d � -4, corresponding to nonlinear separability.

In doing so, in effect, we are repeating the experiment performed in Section 2.5 on the
method of least squares, except this time we use the LMS algorithm.

The results of the experiment pertaining to these two values of d are presented in
Figs. 3.6 and 3.7, respectively. Comparing these two figures with Figs. 2.2 and 2.3, we may
make the following observations:

(a) Insofar as classification performance is concerned, the method of least squares
and the LMS algorithm yield results that are identical for all practical purposes.
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(b) In terms of convergence, the LMS algorithm is much slower than the method of
least squares.This difference is attributed to the fact that the LMS algorithm is re-
cursive, whereas the method of least squares operates in a batch mode that in-
volves matrix inversion in one time-step.

As a matter of interest, in Chapter 5, we present a recursive implementation of
the method of least squares. On account of using second-order information, recursive
implementation of the method of least squares remains faster in its convergence behav-
ior than the LMS algorithm.

3.12 VIRTUES AND LIMITATIONS OF THE LMS ALGORITHM

Computational Simplicity and Efficiency

Two virtues of the LMS algorithm are computational simplicity and efficiency, both
of which are exemplified by the following summary of the algorithm presented in
Table 3.1:

• Coding of the algorithm is composed of two or three lines, which is as simple as any-
one could get.

• Computational complexity of the algorithm is linear in the number of adjustable
parameters.

From a practical perspective, these are important virtues.
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Robustness

Another important virtue of the LMS algorithm is that it is model independent and
therefore robust with respect to disturbances. To explain what we mean by robustness,
consider the situation depicted in Fig. 3.8, where a transfer operator T maps a couple
of disturbances at its input into a “generic” estimation error at the output. Specifically,
at the input, we have the following:

• An initial weight-error vector defined by

(3.65)

where w is an unknown parameter vector and ŵ (0) is its “proposed” initial esti-
mate at time n � 0. In the LMS algorithm, we typically set ŵ (0) � 0, which, in a
way, is the worst possible initializing condition for the algorithm.

• An explanational error that traces back to the regression model of Eq. (2.3),
reproduced here for convenience of presentation, where d is the model output
produced in response to the regressor x:

(3.66)

Naturally, the operator T is a function of the strategy used to construct the estimate 
(e.g., the LMS algorithm). We may now introduce the following definition:

The energy gain of the estimator is defined as the ratio of the error energy at the output of the
operator T to the total disturbance energy at the input.

To remove this dependence and thereby make the estimator “model independent,” we
consider the scenario where we have the largest possible energy gain over all conceivable
disturbance sequences applied to the estimator input. In so doing, we will have defined
the H norm of the transfer operator T.

With this brief background, we may now formulate what the H norm of the trans-
fer operator T is about:

Find a causal estimator that minimizes the H norm of T, where T is a transfer operator
that maps the disturbances to the estimation errors.

The optimal estimator designed in accordance with the H criterion is said to be
of a minimax kind. More specifically, we may view the H optimal estimation problem
as a “game-theoretic problem” in the following sense: Nature, acting as the “opponent,”
has access to the unknown disturbances, thereby maximizing the energy gain. On the
other hand, the “designer” of the estimation strategy has the task of finding a causal
algorithm for which the error energy is minimized. Note that in introducing the idea of
the H criterion, we made no assumptions about the disturbances indicated at the input
of Fig. 3.8.We may therefore say that an estimator designed in accordance with the H
criterion is a worst-case estimator.

q

q

q

q

q

q

q

ŵ(n)

d = wTx + �

�

�w(0) = w - ŵ(0)
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In precise mathematical terms, the LMS algorithm is optimal in accordance with the
H (or minimax) criterion.5 The basic philosophy of optimality in the H sense is to
cater to the worst-case scenario:

If you do not know what you are up against, plan for the worst scenario and optimize.

For a long time, the LMS algorithm was regarded as an instantaneous approximation to
the gradient-descent algorithm. However, the H optimality of LMS algorithm provides
this widely used algorithm with a rigorous footing. Moreover, the H theory of the LMS
algorithm shows that the most robust performance of the algorithm is attained when
the learning-rate parameter � is assigned a small value.

The model-independent behavior of the LMS algorithm also explains the ability
of the algorithm to work satisfactorily in both a stationary and a nonstationary envi-
ronment. By a “nonstationary” environment, we mean an environment in which the
statistics vary with time. In such an environment, the optimum Wiener solution takes on
a time-varying form, and the LMS algorithm has the additional task of tracking varia-
tions in the minimum mean-square error of the Wiener filter.

Factors Limiting the LMS Performance

The primary limitations of the LMS algorithm are its slow rate of convergence and its
sensitivity to variations in the eigenstructure of the input (Haykin, 2002).The LMS algo-
rithm typically requires a number of iterations equal to about 10 times the dimension-
ality of the input data space for it to reach a steady-state condition. The slow rate of
convergence of the LMS algorithm becomes particularly serious when the dimension-
ality of the input data space becomes high.

As for sensitivity to changes in environmental conditions, convergence behavior
of the LMS algorithm is particularly sensitive to variations in the condition number, or
eigenvalue spread, of the correlation matrix Rxx of the input vector x. The condition
number of Rxx, denoted by �(R), is defined by

(3.67)

where 
max and 
min are the maximum and minimum eigenvalues of the correlation
matrix Rxx, respectively. The sensitivity of the LMS algorithm to variations in the con-
dition number �(R) becomes particularly acute when the training sample to which the
input vector x(n) belongs is ill conditioned—that is, when the condition number of the
LMS algorithm is high.6

3.13 LEARNING-RATE ANNEALING SCHEDULES

The slow-rate convergence encountered with the LMS algorithm may be attributed to
the fact that the learning-rate parameter is maintained constant at some value 
throughout the computation, as shown by

(3.68)�(n) = �0  for all n

�0

�(R) =

max


min

q

q

qq
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This is the simplest possible form the learning-rate parameter can assume. In contrast,
in stochastic approximation, which goes back to the classic paper by Robbins and
Monro (1951), the learning-rate parameter is time varying. The particular time-
varying form most commonly used in the stochastic approximation literature is
described by

(3.69)

where c is a constant. Such a choice is indeed sufficient to guarantee convergence of the
stochastic approximation algorithm (Kushner and Clark, 1978). However, when the con-
stant c is large, there is a danger of parameter blowup for small n.

As an alternative to Eqs. (3.68) and (3.69), we may use the search-then-converge
schedule, described by Darken and Moody (1992), as 

(3.70)

where �0 and τ are user-selected constants. In the early stages of adaptation involving a
number of iterations n that is small compared with the search-time constant τ, the learning-
rate parameter �(n) is approximately equal to �0, and the algorithm operates essentially
as the “conventional” LMS algorithm, as indicated in Fig. 3.9. Hence, by choosing a high
value for �0 within the permissible range, we hope that the adjustable weights of the fil-
ter will find and hover about a “good” set of values. Then, for a number n of iterations
that is large compared with the search-time constant τ, the learning-rate parameter �(n)

�(n) =
�0

1 + (n��)

�(n) =
c
n
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approximates as c/n, where c � τ�0, as illustrated in Fig. 3.9. The algorithm now oper-
ates as a traditional stochastic approximation algorithm, and the weights may converge
to their optimum values. Thus, the search-then-converge schedule has the potential to
combine the desirable features of the standard LMS algorithm with traditional sto-
chastic approximation theory.

3.14 SUMMARY AND DISCUSSION

In this chapter, we studied the celebrated least-mean-square (LMS) algorithm, developed
by Widrow and Hoff in 1960. Since its inception, this algorithm has withstood the test
of time for a number of important practical reasons:

1. The algorithm is simple to formulate and just as simple to implement, be it in hard-
ware or software form.

2. In spite of its simplicity, the algorithm is effective in performance.
3. Computationally speaking, the algorithm is efficient in that its complexity follows

a linear law with respect to the number of adjustable parameters.
4. Last, but by no means least, the algorithm is model independent and therefore

robust with respect to disturbances.

Under the assumption that the learning-rate parameter � is a small positive quan-
tity, the convergence behavior of the LMS algorithm—usually difficult to analyze—
becomes mathematically tractable, thanks to Kushner’s direct-averaging method. The
theoretical virtue of this method is that when � is small, the nonlinear “stochastic”
difference equation, which describes the convergence behavior of the LMS algorithm,
is replaced by a nonlinear “deterministic” version of the original equation. Moreover,
through the clever use of eigendecomposition, the solution of the resulting nonlinear
deterministic equation is replaced by a system of decoupled first-order difference
equations.The important point to note here is that the first-order difference equation
so derived is mathematically identical to the discrete-time version of the Langevin
equation of nonequilibrium thermodynamics. This equivalence explains the Brown-
ian motion executed by the LMS algorithm around the optimum Wiener solution after
a large  enough number of iterations. The computer experiment presented in Section
3.10 and other computer experiments presented in Haykin (2006) confirm the valid-
ity of Eq. (3.63), which describes the ensemble-averaged learning curve of the LMS
algorithm.

It is also noteworthy that the LMS algorithm exhibits its most robust performance
when the learning-rate parameter � is small. However, the price paid for this kind of prac-
tically important performance is a relatively slow rate of convergence. To some extent,
this limitation of the LMS algorithm can be alleviated through the use of learning-rate
annealing, as described in Section 3.13.

One last comment is in order.Throughout the chapter, we focused attention on the
ordinary LMS algorithm. Needless to say, the algorithm has several variants, each of
which offers a practical virtue of its own; for details, the interested reader is referred to
(Haykin, 2002).
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NOTES AND REFERENCES

1. Differentiation with respect to a vector
Let f(w) denote a real-valued function of parameter vector w. The derivative of f(w) with
respect to w is defined by the vector

where m is the dimension of vector w. The following two cases are of special interest:

Case 1 The function f(w) is defined by the inner product:

Hence,

or, equivalently, in matrix form,

(3.71)

Case 2 The function f(w) is defined by the quadratic form:

Here, rij is the ij-th element of the m-by-m matrix R. Hence,

or, equivalently, in matrix form,

(3.72)

Equations (3.71) and (3.72) provide two useful rules for the differentiation of a real-valued
function with respect to a vector.

2. The pseudoinverse of a rectangular matrix is discussed in Golub and Van Loan (1996); see
also Chapter 8 of Haykin (2002).

3. The Langevin equation is discussed in Reif (1965). For a fascinating historical account of
the Langevin equation, see the tutorial paper on noise by Cohen (2005).

4. The orthogonality transformation described in Eq. (3.56) follows from the eigendecompo-
sition of a square matrix. This topic is described in detail in Chapter 8.
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5. For an early (and perhaps the first) motivational treatment of H control, the reader is
referred to Zames (1981).

The first exposition of optimality of the LMS algorithm in the H sense was presented
in Hassibi et al. (1993). Hassibi et al. (1999) treat the H theory from an estimation or
adaptive-filtering perspective. Hassibi also presents a condensed treatment of robustness
of the LMS algorithm in the H sense in Chapter 5 of Haykin and Widrow (2005).

For books on H theory from a control perspective, the reader is referred to Zhou
and Doyle (1998) and Green and Limebeer (1995).

6. Sensitivity of convergence behavior of the LMS algorithm to variations in the condition
number of the correlation matrix Rxx, denoted by �(R), is demonstrated experimentally in
Section 5.7 of the book by Haykin (2002). In Chapter 9 of Haykin (2002), which deals with
recursive implementation of the method of least squares, it is also shown that convergence
behavior of the resulting algorithm is essentially independent of the condition number �(R).

PROBLEMS

3.1 (a) Let m(n) denote the mean weight vector of the LMS algorithm at iteration n; that is,

Using the small-learning-rate parameter theory of Section 3.9, show that

where � is the learning-rate parameter, Rxx is the correlation matrix of the input vec-
tor x(n), and m(0) and are the initial and final values of m(n), respectively.

(b) Show that for convergence of the LMS algorithm in the mean, the learning-rate
parameter � must satisfy the condition

where is the largest eigenvalue of the correlation matrix Rxx.
3.2 Continuing from Problem 3.1, discuss why convergence of the LMS algorithm in the mean

is not an adequate criterion for convergence in practice.
3.3 Consider the use of a white-noise sequence of zero mean and variance σ2 as the input to the LMS

algorithm.Determine the condition for convergence of the algorithm in the mean-square sense.
3.4 In a variant of the LMS algorithm called the leaky LMS algorithm, the cost function to be

minimized is defined by

where w(n) is the parameter vector, e(n) is the estimation error, and 
 is a constant. As in
the ordinary LMS algorithm, we have

where d(n) is the desired response corresponding to the input vector x(n).

e(n) = d(n) - wT(n)x(n)

e(n) =
1
2

�e(n)�2 +
1
2


 7w(n) 7 2


max

O 6 � 6
2


max

m(q)

m(n) = (I - �Rxx)n[m(0) - m(q)] + m(q)

m(n) = �[ŵ(n)]

q

q

q

q

q
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(a) Show that the time update for the parameter vector of the leaky LMS algorithm is
defined by

which includes the ordinary LMS algorithm as a special case.
(b) Using the small learning-rate parameter theory of Section 3.9, show that

where Rxx is the correlation matrix of x(n), I is the identity matrix, and rdx is the cross-
correlation vector between x(n) and d(n).

3.5 Continuing from Problem 3.4, verify that the leaky LMS algorithm can be “simulated” by
adding white noise to the input vector x(n).
(a) What should variance of this noise be for the condition in part (b) of Problem 3.4 to hold?
(b) When will the simulated algorithm take a form that is practically the same as the leaky

LMS algorithm? Justify your answer.

3.6 An alternative to the mean-square error (MSE) formulation of the learning curve that we
sometimes find in the literature is the mean-square deviation (MSD) learning curve. Define
the weight-error vector

where w is the parameter vector of the regression model supplying the desired response.This
second learning curve is obtained by computing a plot of the MSD

versus the number of iterations n.
Using the small-learning-rate-parameter theory of Section 3.9, show that 

where � is the learning-rate parameter, M is the size of the parameter vector , and Jmin is
the minimum mean-square error of the LMS algorithm.

3.7 In this problem, we address a proof of the direct-averaging method, assuming ergodicity.
Start with Eq. (3.41), which defines the weight-error vector in terms of the transi-

tion matrix A(n) and driving force f(n), which are themselves defined in terms of the input
vector x(n) in Eqs. (3.42) and (3.43), respectively; then proceed as follows:
• Set n � 0, and evaluate  .� (1)

� (n)

ŵ

=
1
2

�MJmin

D(q) = lim
n S q

D(n)

D(n) = �[��(n)�2]

� (n) = w - ŵ(n)

lim
x S q

�[ŵ(n)] = (Rxx + 
I)-1rdx

ŵ(n + 1) = (1 - �
)ŵ(n) + �x(n)e(n)
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• Set n � 1, and evaluate  .
• Continue in this fashion for a few more iterations.

� (2)

With these iterated values of at hand, deduce a formula for the transition matrix A(n).� (n)
Next, assume that the learning-rate parameter � is small enough to justify retaining only

the terms that are linear in �. Hence, show that

A(n) = I - �a
n

i = 1
x(i)xT(i)



which, assuming ergodicity, takes the form

3.8 When the learning-rate parameter � is small, the LMS algorithm acts like a low-pass filter
with a small cutoff frequency. Such a filter produces an output that is proportional to the
average of the input signal.

Using Eq. (3.41), demonstrate this property of the LMS algorithm by considering the sim-
ple example of the algorithm using a single parameter.

3.9 Starting with Eq. (3.55) for a small learning-rate parameter, show that under steady-state con-
ditions, the Lyapunov equation

holds, where we have

and

for i � 0, 1, 2, ....The matrix P0 is defined by , and eo(n) is the irreducible esti-
mation error produced by the Wiener filter.

Computer Experiments
3.10 Repeat the computer experiment of Section 3.10 on linear prediction for the following val-

ues of the learning-rate parameter:
(i) � � 0.002;
(ii) � � 0.01;
(iii) � � 0.02.
Comment on your findings in the context of applicability of the small-learning-rate-
parameter theory of the LMS algorithm for each value of �.

3.11 Repeat the computer experiment of Section 3.11 on pattern classification for the distance
of separation between the two moons of Fig. 1.8 set at d = 0. Compare the results of your
experiment with those in Problem 1.6 on the perceptron and Problem 2.7 on the method of
least squares.

3.12 Plot the pattern-classification learning curves of the LMS algorithm applied to the double-
moon configuration of Fig. 1.8 for the following values assigned to the distance of separation:
d � 1
d � 0
d � �4
Compare the results of the experiment with the corresponding ones obtained using Rosen-
blatt’s perceptron in Chapter 1.

�[�o(n)�T
o  (n)]

R(i) = �[x(n)xT(n - i)]

J(i)
min = �[eo(n)eo(n - i)]

RP0(n) + P0(n)R = �a
q

i = 0
J(i)

min R
(i)

A(n) = I - �Rxx
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122

ORGANIZATION OF THE CHAPTER

In this chapter, we study the many facets of the multilayer perceptron, which stands for
a neural network with one or more hidden layers. After the introductory material pre-
sented in Section 4.1, the study proceeds as follows:

1. Sections 4.2 through 4.7 discuss matters relating to back-propagation learning.We begin
with some preliminaries in Section 4.2 to pave the way for the derivation of the back-
propagation algorithm.This section also includes a discussion of the credit-assignment
problem. In Section 4.3, we describe two methods of learning: batch and on-line. In
Section 4.4, we present a detailed derivation of the back-propagation algorithm, using
the chain rule of calculus;we take a traditional approach in this derivation. In Section 4.5,
we illustrate the use of the back-propagation algorithm by solving the XOR problem,
an interesting problem that cannot be solved by Rosenblatt’s perceptron. Section 4.6
presents some heuristics and practical guidelines for making the back-propagation
algorithm perform better. Section 4.7 presents a pattern-classification experiment on
the multilayer perceptron trained with the back-propagation algorithm.

2. Sections 4.8 and 4.9 deal with the error surface. In Section 4.8, we discuss the fun-
damental role of back-propagation learning in computing partial derivatives of a
network-approximating function.We then discuss computational issues relating to
the Hessian of the error surface in Section 4.9. In Section 4.10, we discuss two
issues: how to fulfill optimal annealing and how to make the learning-rate pa-
rameter adaptive.

3. Sections 4.11 through 4.14 focus on various matters relating to the performance of a
multilayer perceptron trained with the back-propagation algorithm. In Section 4.11, we
discuss the issue of generalization—the very essence of learning. Section 4.12 addresses
the approximation of continuous functions by means of multiplayer perceptrons.The use
of cross-validation as a statistical design tool is discussed in Section 4.13. In Section 4.14,
we discuss the issue of complexity regularization,as well as network-pruning techniques.

4. Section 4.15, summarizes the advantages and limitations of back-propagation learning.

5. Having completed the study of back-propagation learning, we next take a different
perspective on learning in Section 4.16 by viewing supervised learning as an
optimization problem.

C H A P T E R  4

Multilayer Perceptrons



6. Section 4.17 describes an important neural network structure: the convolutional mul-
tilayer perceptron. This network has been successfully used in the solution of difficult
pattern-recognition problems.

7. Section 4.18 deals with nonlinear filtering, where time plays a key role.The discussion
begins with short-term memory structures, setting the stage for the universal myopic
mapping theorem.

8. Section 4.19 discusses the issue of small-scale versus large-scale learning problems.

The chapter concludes with summary and discussion in Section 4.20.

4.1 INTRODUCTION

In Chapter 1, we studied Rosenblatt’s perceptron, which is basically a single-layer neural
network.Therein, we showed that this network is limited to the classification of linearly
separable patterns. Then we studied adaptive filtering in Chapter 3, using Widrow and
Hoff’s LMS algorithm. This algorithm is also based on a single linear neuron with
adjustable weights, which limits the computing power of the algorithm. To overcome
the practical limitations of the perceptron and the LMS algorithm, we look to a neural
network structure known as the multilayer perceptron.

The following three points highlight the basic features of multilayer perceptrons:

• The model of each neuron in the network includes a nonlinear activation func-
tion that is differentiable.

• The network contains one or more layers that are hidden from both the input and
output nodes.

• The network exhibits a high degree of connectivity, the extent of which is deter-
mined by synaptic weights of the network.

These same characteristics, however, are also responsible for the deficiencies in
our knowledge on the behavior of the network. First, the presence of a distributed form
of nonlinearity and the high connectivity of the network make the theoretical analysis
of a multilayer perceptron difficult to undertake. Second, the use of hidden neurons
makes the learning process harder to visualize. In an implicit sense, the learning process
must decide which features of the input pattern should be represented by the hidden
neurons. The learning process is therefore made more difficult because the search has
to be conducted in a much larger space of possible functions, and a choice has to be
made between alternative representations of the input pattern.

A popular method for the training of multilayer perceptrons is the back-propagation
algorithm, which includes the LMS algorithm as a special case.The training proceeds in
two phases:

1. In the forward phase, the synaptic weights of the network are fixed and the input
signal is propagated through the network, layer by layer, until it reaches the output.
Thus, in this phase, changes are confined to the activation potentials and outputs
of the neurons in the network.
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2. In the backward phase, an error signal is produced by comparing the output of the
network with a desired response. The resulting error signal is propagated through
the network, again layer by layer, but this time the propagation is performed in the
backward direction. In this second phase, successive adjustments are made to the
synaptic weights of the network. Calculation of the adjustments for the output layer
is straightforward, but it is much more challenging for the hidden layers.

Usage of the term “back propagation” appears to have evolved after 1985, when the
term was popularized through the publication of the seminal book entitled Parallel Dis-
tributed Processing (Rumelhart and McClelland, 1986).

The development of the back-propagation algorithm in the mid-1980s represented
a landmark in neural networks in that it provided a computationally efficient method for
the training of multilayer perceptrons, putting to rest the pessimism about learning in
multilayer perceptrons that may have been inferred from the book by Minsky and Papert
(1969).

4.2 SOME PRELIMINARIES

Figure 4.1 shows the architectural graph of a multiplayer perceptron with two hidden
layers and an output layer. To set the stage for a description of the multilayer percep-
tron in its general form, the network shown here is fully connected. This means that a neu-
ron in any layer of the network is connected to all the neurons (nodes) in the previous
layer. Signal flow through the network progresses in a forward direction, from left to right
and on a layer-by-layer basis.
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Figure 4.2 depicts a portion of the multilayer perceptron.Two kinds of signals are
identified in this network:

1. Function Signals. A function signal is an input signal (stimulus) that comes in at
the input end of the network, propagates forward (neuron by neuron) through the
network, and emerges at the output end of the network as an output signal. We
refer to such a signal as a “function signal” for two reasons. First, it is presumed to
perform a useful function at the output of the network. Second, at each neuron of
the network through which a function signal passes, the signal is calculated as a
function of the inputs and associated weights applied to that neuron.The function
signal is also referred to as the input signal.

2. Error Signals. An error signal originates at an output neuron of the network and
propagates backward (layer by layer) through the network. We refer to it as an
“error signal” because its computation by every neuron of the network involves an
error-dependent function in one form or another.

The output neurons constitute the output layer of the network. The remaining
neurons constitute hidden layers of the network. Thus, the hidden units are not part of
the output or input of the network—hence their designation as “hidden.” The first
hidden layer is fed from the input layer made up of sensory units (source nodes); the
resulting outputs of the first hidden layer are in turn applied to the next hidden layer;
and so on for the rest of the network.

Each hidden or output neuron of a multilayer perceptron is designed to perform
two computations:

1. the computation of the function signal appearing at the output of each neuron,
which is expressed as a continuous nonlinear function of the input signal and
synaptic weights associated with that neuron;

2. the computation of an estimate of the gradient vector (i.e., the gradients of the
error surface with respect to the weights connected to the inputs of a neuron),
which is needed for the backward pass through the network.
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Function of the Hidden Neurons

The hidden neurons act as feature detectors; as such, they play a critical role in the oper-
ation of a multilayer perceptron.As the learning process progresses across the multilayer
perceptron, the hidden neurons begin to gradually “discover” the salient features that
characterize the training data.They do so by performing a nonlinear transformation on
the input data into a new space called the feature space. In this new space, the classes of
interest in a pattern-classification task, for example, may be more easily separated from
each other than could be the case in the original input data space. Indeed, it is the for-
mation of this feature space through supervised learning that distinguishes the multilayer
perceptron from Rosenblatt’s perceptron.

Credit-Assignment Problem

When studying learning algorithms for distributed systems, exemplified by the multi-
layer perceptron of Figure 4.1, it is instructive to pay attention to the notion of credit
assignment. Basically, the credit-assignment problem is the problem of assigning credit
or blame for overall outcomes to each of the internal decisions made by the hidden com-
putational units of the distributed learning system, recognizing that those decisions are
responsible for the overall outcomes in the first place.

In a multilayer perceptron using error-correlation learning, the credit-assignment
problem arises because the operation of each hidden neuron and of each output neu-
ron in the network is important to the network’s correct overall action on a learning
task of interest. That is, in order to solve the prescribed task, the network must assign
certain forms of behavior to all of its neurons through a specification of the error-
correction learning algorithm. With this background, consider the multilayer percep-
tron depicted in Fig. 4.1. Since each output neuron is visible to the outside world, it is
possible to supply a desired response to guide the behavior of such a neuron. Thus, as
far as output neurons are concerned, it is a straightforward matter to adjust the synap-
tic weights of each output neuron in accordance with the error-correction algorithm.
But how do we assign credit or blame for the action of the hidden neurons when the
error-correction learning algorithm is used to adjust the respective synaptic weights of
these neurons? The answer to this fundamental question requires more detailed atten-
tion than in the case of output neurons.

In what follows in this chapter, we show that the back-propagation algorithm, basic
to the training of a multilayer perceptron, solves the credit-assignment problem in an ele-
gant manner. But before proceeding to do that, we describe two basic methods of super-
vised learning in the next section.

4.3 BATCH LEARNING AND ON-LINE LEARNING

Consider a multilayer perceptron with an input layer of source nodes, one or more
hidden layers, and an output layer consisting of one or more neurons; as illustrated in
Fig. 4.1. Let

(4.1)t = {x(n), d(n)}Nn=1
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denote the training sample used to train the network in a supervised manner. Let yj(n)
denote the function signal produced at the output of neuron j in the output layer by the
stimulus x(n) applied to the input layer. Correspondingly, the error signal produced at
the output of neuron j is defined by

(4.2)

where dj(n) is the ith element of the desired-response vector d(n). Following the termi-
nology of the LMS algorithm studied in Chapter 3, the instantaneous error energy of
neuron j is defined by

(4.3)

Summing the error-energy contributions of all the neurons in the output layer, we express
the total instantaneous error energy of the whole network as

(4.4)

where the set C includes all the neurons in the output layer.With the training sample con-
sisting of N examples, the error energy averaged over the training sample, or the empirical
risk, is defined by

(4.5)

Naturally, the instantaneous error energy, and therefore the average error energy, are
both functions of all the adjustable synaptic weights (i.e., free parameters) of the mul-
tilayer perceptron. This functional dependence has not been included in the formulas
for e(n) and eav(N), merely to simplify the terminology.

Depending on how the supervised learning of the multilayer perceptron is actu-
ally performed, we may identify two different methods—namely, batch learning and on-
line learning, as discussed next in the context of gradient descent.

Batch Learning

In the batch method of supervised learning, adjustments to the synaptic weights of the
multilayer perceptron are performed after the presentation of all the N examples in the
training sample t that constitute one epoch of training. In other words, the cost function
for batch learning is defined by the average error energy eav. Adjustments to the synaptic
weights of the multilayer perceptron are made on an epoch-by-epoch basis. Correspond-
ingly, one realization of the learning curve is obtained by plotting eav versus the number
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of epochs, where, for each epoch of training, the examples in the training sample t are
randomly shuffled. The learning curve is then computed by ensemble averaging a large
enough number of such realizations, where each realization is performed for a different
set of initial conditions chosen at random.

With the method of gradient descent used to perform the training, the advantages
of batch learning include the following:

• accurate estimation of the gradient vector (i.e., the derivative of the cost function
eav with respect to the weight vector w), thereby guaranteeing, under simple con-
ditions, convergence of the method of steepest descent to a local minimum;

• parallelization of the learning process.

However, from a practical perspective, batch learning is rather demanding in terms of
storage requirements.

In a statistical context, batch learning may be viewed as a form of statistical infer-
ence. It is therefore well suited for solving nonlinear regression problems.

On-line Learning

In the on-line method of supervised learning, adjustments to the synaptic weights of the
multilayer perceptron are performed on an example-by-example basis. The cost function
to be minimized is therefore the total instantaneous error energy e(n).

Consider an epoch of N training examples arranged in the order {x(1), d(1)}, {x(2),
d(2)}, {x(N), d(N)}.The first example pair {x(1), d(1)} in the epoch is presented to the
network, and the weight adjustments are performed using the method of gradient
descent.Then the second example {x(2), d(2)} in the epoch is presented to the network,
which leads to further adjustments to weights in the network. This procedure is contin-
ued until the last example {x(N), d(N)} is accounted for. Unfortunately, such a procedure
works against the parallalization of on-line learning.

For a given set of initial conditions, a single realization of the learning curve is
obtained by plotting the final value e(N) versus the number of epochs used in the train-
ing session, where, as before, the training examples are randomly shuffled after each
epoch. As with batch learning, the learning curve for on-line learning is computed by
ensemble averaging such realizations over a large enough number of initial conditions
chosen at random. Naturally, for a given network structure, the learning curve obtained
under on-line learning will be quite different from that under batch learning.

Given that the training examples are presented to the network in a random man-
ner, the use of on-line learning makes the search in the multidimensional weight space
stochastic in nature; it is for this reason that the method of on-line learning is sometimes
referred to as a stochastic method. This stochasticity has the desirable effect of making
it less likely for the learning process to be trapped in a local minimum, which is a defi-
nite advantage of on-line learning over batch learning. Another advantage of on-line
learning is the fact that it requires much less storage than batch learning.

Moreover, when the training data are redundant (i.e., the training sample t con-
tains several copies of the same example), we find that, unlike batch learning, on-line

...,

128 Chapter 4 Multilayer Perceptrons



learning is able to take advantage of this redundancy because the examples are presented
one at a time.

Another useful property of on-line learning is its ability to track small changes in
the training data, particularly when the environment responsible for generating the data
is nonstationary.

To summarize, despite the disadvantages of on-line learning, it is highly popular for
solving pattern-classification problems for two important practical reasons:

• On-line learning is simple to implement.
• It provides effective solutions to large-scale and difficult pattern-classification

problems.

It is for these two reasons that much of the material presented in this chapter is devoted
to on-line learning.

4.4 THE BACK-PROPAGATION ALGORITHM

The popularity of on-line learning for the supervised training of multilayer perceptrons
has been further enhanced by the development of the back-propagation algorithm. To
describe this algorithm, consider Fig. 4.3, which depicts neuron j being fed by a set of
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function signals produced by a layer of neurons to its left. The induced local field vj(n)
produced at the input of the activation function associated with neuron j is therefore

(4.6)

where m is the total number of inputs (excluding the bias) applied to neuron j. The
synaptic weight wj0 (corresponding to the fixed input y0 � �1) equals the bias bj applied
to neuron j. Hence, the function signal yj(n) appearing at the output of neuron j at
iteration n is

(4.7)

In a manner similar to the LMS algorithm studied in Chapter 3, the back-
propagation algorithm applies a correction wji(n) to the synaptic weight wji(n), which
is proportional to the partial derivative . According to the chain rule of
calculus, we may express this gradient as

(4.8)

The partial derivative represents a sensitivity factor, determining the
direction of search in weight space for the synaptic weight wji.

Differentiating both sides of Eq. (4.4) with respect to ej(n), we get

(4.9)

Differentiating both sides of Eq. (4.2) with respect to yj(n), we get

(4.10)

Next, differentiating Eq. (4.7) with respect to vj(n), we get

(4.11)

where the use of prime (on the right-hand side) signifies differentiation with respect to
the argument. Finally, differentiating Eq. (4.6) with respect to wji(n) yields

(4.12)

The use of Eqs. (4.9) to (4.12) in Eq. (4.8) yields

(4.13)
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The correction wji(n) applied to wji(n) is defined by the delta rule, or

(4.14)

where � is the learning-rate parameter of the back-propagation algorithm. The use of
the minus sign in Eq. (4.14) accounts for gradient descent in weight space (i.e., seeking
a direction for weight change that reduces the value of ). Accordingly, the use of
Eq. (4.13) in Eq. (4.14) yields

(4.15)

where the local gradient is defined by

(4.16)

The local gradient points to required changes in synaptic weights.According to Eq. (4.16),
the local gradient �j(n) for output neuron j is equal to the product of the corresponding
error signal ej(n) for that neuron and the derivative �j�(vj(n)) of the associated activa-
tion function.

From Eqs. (4.15) and (4.16), we note that a key factor involved in the calculation
of the weight adjustment !wji(n) is the error signal ej(n) at the output of neuron j. In this
context, we may identify two distinct cases, depending on where in the network neuron
j is located. In case 1, neuron j is an output node. This case is simple to handle because
each output node of the network is supplied with a desired response of its own, making
it a straightforward matter to calculate the associated error signal. In case 2, neuron j is
a hidden node. Even though hidden neurons are not directly accessible, they share
responsibility for any error made at the output of the network. The question, however,
is to know how to penalize or reward hidden neurons for their share of the responsibility.
This problem is the credit-assignment problem considered in Section 4.2.

Case 1 Neuron j Is an Output Node

When neuron j is located in the output layer of the network, it is supplied with a desired
response of its own. We may use Eq. (4.2) to compute the error signal ej(n) associated
with this neuron; see Fig. 4.3. Having determined ej(n), we find it a straightforward mat-
ter to compute the local gradient �j(n) by using Eq. (4.16).

Case 2 Neuron j Is a Hidden Node

When neuron j is located in a hidden layer of the network, there is no specified desired
response for that neuron.Accordingly, the error signal for a hidden neuron would have
to be determined recursively and working backwards in terms of the error signals of
all the neurons to which that hidden neuron is directly connected; this is where the
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development of the back-propagation algorithm gets complicated. Consider the situa-
tion in Fig. 4.4, which depicts neuron j as a hidden node of the network. According to
Eq. (4.16), we may redefine the local gradient �j(n) for hidden neuron j as

(4.17)

where in the second line we have used Eq. (4.11). To calculate the partial derivative
, we may proceed as follows: From Fig. 4.4, we see that

(4.18)

which is Eq. (4.4) with index k used in place of index j. We have made this substitution
in order to avoid confusion with the use of index j that refers to a hidden neuron under
case 2. Differentiating Eq. (4.18) with respect to the function signal yj(n), we get

(4.19)
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Next we use the chain rule for the partial derivative and rewrite Eq. (4.19)
in the equivalent form

(4.20)

However, from Fig. 4.4, we note that

(4.21)

Hence,

(4.22)

We also note from Fig. 4.4 that for neuron k, the induced local field is

(4.23)

where m is the total number of inputs (excluding the bias) applied to neuron k. Here
again, the synaptic weight wk0(n) is equal to the bias bk(n) applied to neuron k, and the
corresponding input is fixed at the value �1. Differentiating Eq. (4.23) with respect to
yj(n) yields

(4.24)

By using Eqs. (4.22) and (4.24) in Eq. (4.20), we get the desired partial derivative

(4.25)

where, in the second line, we have used the definition of the local gradient �k(n) given
in Eq. (4.16), with the index k substituted for j.

Finally, using Eq. (4.25) in Eq. (4.17), we get the back-propagation formula for the
local gradient �j(n), described by

(4.26)

Figure 4.5 shows the signal-flow graph representation of Eq. (4.26), assuming that the
output layer consists of mL neurons.

The outside factor �j�(vj(n)) involved in the computation of the local gradient �j(n) in
Eq. (4.26) depends solely on the activation function associated with hidden neuron j.
The remaining factor involved in this computation—namely,the summation over k—depends
on two sets of terms. The first set of terms, the �k(n), requires knowledge of the error
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signals ek(n) for all neurons that lie in the layer to the immediate right of hidden neu-
ron j and that are directly connected to neuron j; see Fig. 4.4. The second set of terms,
the wkj(n), consists of the synaptic weights associated with these connections.

We now summarize the relations that we have derived for the back-propagation
algorithm. First, the correction !wji(n) applied to the synaptic weight connecting neu-
ron i to neuron j is defined by the delta rule:

(4.27)

Second, the local gradient �j(n) depends on whether neuron j is an output node or a
hidden node:

1. If neuron j is an output node, �j(n) equals the product of the derivative �j�(vj(n))
and the error signal ej(n), both of which are associated with neuron j; see Eq. (4.16).

2. If neuron j is a hidden node, �j(n) equals the product of the associated derivative
�j�(vj(n)) and the weighted sum of the �s computed for the neurons in the next
hidden or output layer that are connected to neuron j; see Eq. (4.26).

The Two Passes of Computation

In the application of the back-propagation algorithm, two different passes of computa-
tion are distinguished. The first pass is referred to as the forward pass, and the second
is referred to as the backward pass.

In the forward pass, the synaptic weights remain unaltered throughout the net-
work, and the function signals of the network are computed on a neuron-by-neuron
basis. The function signal appearing at the output of neuron j is computed as

(4.28)

where vj(n) is the induced local field of neuron j, defined by
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where m is the total number of inputs (excluding the bias) applied to neuron j; wji(n) is
the synaptic weight connecting neuron i to neuron j; and yi(n) is an input signal of neu-
ron j, or, equivalently, the function signal appearing at the output of neuron i. If neuron
j is in the first hidden layer of the network, then m � m0 and the index i refers to the ith
input terminal of the network, for which we write

(4.30)

where xi(n) is the ith element of the input vector (pattern). If, on the other hand, neu-
ron j is in the output layer of the network, then m � mL and the index j refers to the jth
output terminal of the network, for which we write

(4.31)

where oj(n) is the jth element of the output vector of the multilayer perceptron.This out-
put is compared with the desired response dj(n), obtaining the error signal ej(n) for the
jth output neuron. Thus, the forward phase of computation begins at the first hidden
layer by presenting it with the input vector and terminates at the output layer by com-
puting the error signal for each neuron of this layer.

The backward pass, on the other hand, starts at the output layer by passing the
error signals leftward through the network, layer by layer, and recursively computing the
� (i.e., the local gradient) for each neuron. This recursive process permits the synaptic
weights of the network to undergo changes in accordance with the delta rule of Eq. (4.27).
For a neuron located in the output layer, the � is simply equal to the error signal of that
neuron multiplied by the first derivative of its nonlinearity. Hence, we use Eq. (4.27) to
compute the changes to the weights of all the connections feeding into the output layer.
Given the �s for the neurons of the output layer, we next use Eq. (4.26) to compute the
�s for all the neurons in the penultimate layer and therefore the changes to the weights
of all connections feeding into it.The recursive computation is continued, layer by layer,
by propagating the changes to all synaptic weights in the network.

Note that for the presentation of each training example, the input pattern is fixed—
that is, “clamped” throughout the round-trip process, which encompasses the forward
pass followed by the backward pass.

Activation Function

The computation of the � for each neuron of the multilayer perceptron requires knowl-
edge of the derivative of the activation function �(·) associated with that neuron. For this
derivative to exist, we require the function �(·) to be continuous. In basic terms, differ-
entiability is the only requirement that an activation function has to satisfy.An example
of a continuously differentiable nonlinear activation function commonly used in multi-
layer perceptrons is sigmoidal nonlinearity,1 two forms of which are described here:

1. Logistic Function. This form of sigmoidal nonlinearity, in its general form, is
defined by

(4.32)�j(vj(n)) =
1

1 + exp(-avj(n))
,  a 7 0

yj(n) = oj(n)

yi(n) = xi(n)
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where vj(n) is the induced local field of neuron j and a is an adjustable positive parameter.
According to this nonlinearity, the amplitude of the output lies inside the range

Differentiating Eq. (4.32) with respect to vj(n), we get

(4.33)

With yj(n) � �j(vj(n)), we may eliminate the exponential term exp(-avj(n)) from Eq. (4.33)
and consequently express the derivative �j�(vj(n)) as

(4.34)

For a neuron j located in the output layer, yj(n) � oj(n). Hence, we may express the local
gradient for neuron j as

(4.35)

where oj(n) is the function signal at the output of neuron j, and dj(n) is the desired
response for it. On the other hand, for an arbitrary hidden neuron j, we may express
the local gradient as

(4.36)

Note from Eq. (4.34) that the derivative �j�(vj(n)) attains its maximum value at yj(n) �
0.5 and its minimum value (zero) at yj(n) � 0, or yj(n) � 1.0. Since the amount of change
in a synaptic weight of the network is proportional to the derivative �j�(vj(n)), it follows
that for a sigmoid activation function, the synaptic weights are changed the most for
those neurons in the network where the function signals are in their midrange.Accord-
ing to Rumelhart et al. (1986a), it is this feature of back-propagation learning that con-
tributes to its stability as a learning algorithm.

2. Hyperbolic tangent function. Another commonly used form of sigmoidal non-
linearity is the hyperbolic tangent function, which, in its most general form, is defined by

(4.37)

where a and b are positive constants. In reality, the hyperbolic tangent function is just
the logistic function rescaled and biased. Its derivative with respect to vj(n) is given by

(4.38)

 =
b
a

 [a - yj(n)][a + yj(n)]

 = ab(1 - tanh2(bvj(n)))

 �¿j(vj(n)) = ab sech2(bvj(n))

�j(vj(n)) = a tanh(bvj(n))

 = ayj(n)[1 - yj(n)]a
k

�k(n)wkj(n),  neuron j is hidden

 �j(n) = �¿j(vj(n))a
k

�k(n)wkj(n)

 = a[dj(n) - oj(n)]oj(n)[1 - oj(n)],  neuron j is an output node

 �j(n) = ej(n)�¿j(vj(n))

�¿j(vj(n)) = ayj(n)[1 - yj(n)]

�¿j(vj(n)) =
a exp(-avj(n))

[1 + exp(-avj(n))]2

0 � yj � 1.
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For a neuron j located in the output layer, the local gradient is

(4.39)

For a neuron j in a hidden layer, we have

(4.40)

By using Eqs. (4.35) and (4.36) for the logistic function and Eqs. (4.39) and (4.40) for the
hyperbolic tangent function, we may calculate the local gradient �j without requiring
explicit knowledge of the activation function.

Rate of Learning

The back-propagation algorithm provides an “approximation” to the trajectory in weight
space computed by the method of steepest descent. The smaller we make the learning-
rate parameter �, the smaller the changes to the synaptic weights in the network will be
from one iteration to the next, and the smoother will be the trajectory in weight space.
This improvement, however, is attained at the cost of a slower rate of learning. If, on
the other hand, we make the learning-rate parameter � too large in order to speed up
the rate of learning, the resulting large changes in the synaptic weights assume such a
form that the network may become unstable (i.e., oscillatory). A simple method of
increasing the rate of learning while avoiding the danger of instability is to modify the
delta rule of Eq. (4.15) by including a momentum term, as shown by

(4.41)

where � is usually a positive number called the momentum constant. It controls the feed-
back loop acting around !wji(n), as illustrated in Fig. 4.6, where z-1 is the unit-time delay
operator. Equation (4.41) is called the generalized delta rule2; it includes the delta rule
of Eq. (4.15) as a special case (i.e., � � 0).

In order to see the effect of the sequence of pattern presentations on the synap-
tic weights due to the momentum constant �, we rewrite Eq. (4.41) as a time series with
index t. The index t goes from the initial time 0 to the current time n. Equation (4.41)

¢wji(n) = �¢wji(n - 1) + ��j(n)yi(n)

 =
b
a

 [a - yj(n)] [a + yj(n)]a
k

�k(n)wkj(n),  neuron j is hidden

 �j(n) = �¿j(vj(n))a
k

�k(n)wkj(n)

 =
b
a

 [dj(n) - oj(n)][a - oj(n)][a + oj(n)]

 �j(n) = ej(n)�¿j(vj(n))
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may be viewed as a first-order difference equation in the weight correction wji(n).
Solving this equation for wji(n), we have

(4.42)

which represents a time series of length n � 1. From Eqs. (4.13) and (4.16), we note that the
product �j(n)yi(n) is equal to . Accordingly, we may rewrite Eq. (4.42) in
the equivalent form

(4.43)

Based on this relation, we may make the following insightful observations:

1. The current adjustment wji(n) represents the sum of an exponentially weighted
time series. For the time series to be convergent, the momentum constant must be
restricted to the range When � is zero, the back-propagation algorithm0 � ��� 6 1.

¢

¢wji(n) = - �a
n

t = 0
�n - t 

0e(t)

0wji(t)

-0e(n) � 0wji(n)

¢wji(n) = �a
n

t = 0
�n - t�j(t)yi(t)

¢
¢

138 Chapter 4 Multilayer Perceptrons

operates without momentum. Also, the momentum constant � can be positive or nega-
tive, although it is unlikely that a negative � would be used in practice.

2. When the partial derivative has the same algebraic sign on con-
secutive iterations, the exponentially weighted sum wji(n) grows in magnitude, and
consequently the weight wji(n) is adjusted by a large amount. The inclusion of momen-
tum in the back-propagation algorithm tends to accelerate descent in steady downhill
directions.

3. When the partial derivative has opposite signs on consecutive
iterations, the exponentially weighted sum wji(n) shrinks in magnitude, and conse-
quently the weight wji(n) is adjusted by a small amount.The inclusion of momentum in
the back-propagation algorithm has a stabilizing effect in directions that oscillate in sign.

The incorporation of momentum in the back-propagation algorithm represents a
minor modification to the weight update; however, it may have some beneficial effects
on the learning behavior of the algorithm.The momentum term may also have the ben-
efit of preventing the learning process from terminating in a shallow local minimum on
the error surface.

In deriving the back-propagation algorithm, it was assumed that the learning-rate
parameter is a constant denoted by �. In reality, however, it should be defined as �ji;
that is, the learning-rate parameter should be connection dependent. Indeed, many inter-
esting things can be done by making the learning-rate parameter different for different
parts of the network. We provide more detail on this issue in subsequent sections.

It is also noteworthy that in the application of the back-propagation algorithm,
we may choose all the synaptic weights in the network to be adjustable, or we may con-
strain any number of weights in the network to remain fixed during the adaptation
process. In the latter case, the error signals are back propagated through the network
in the usual manner; however, the fixed synaptic weights are left unaltered. This can be
done simply by making the learning-rate parameter �ji for synaptic weight wji equal to
zero.

¢
0e(t)�0wji(t)

¢
0e(t)�0wji(t)



Stopping Criteria

In general, the back-propagation algorithm cannot be shown to converge, and there are
no well-defined criteria for stopping its operation. Rather, there are some reasonable
criteria, each with its own practical merit, that may be used to terminate the weight
adjustments. To formulate such a criterion, it is logical to think in terms of the unique
properties of a local or global minimum of the error surface.3 Let the weight vector w*
denote a minimum, be it local or global.A necessary condition for w* to be a minimum
is that the gradient vector g(w) (i.e., first-order partial derivative) of the error surface
with respect to the weight vector w must be zero at w � w*. Accordingly, we may
formulate a sensible convergence criterion for back-propagation learning as follows
(Kramer and Sangiovanni-Vincentelli, 1989):

The back-propagation algorithm is considered to have converged when the Euclidean norm
of the gradient vector reaches a sufficiently small gradient threshold.

The drawback of this convergence criterion is that, for successful trials, learning times
may be long. Also, it requires the computation of the gradient vector g(w).

Another unique property of a minimum that we can use is the fact that the cost
function is stationary at the point w � w*.We may therefore suggest a different
criterion of convergence:

The back-propagation algorithm is considered to have converged when the absolute rate of
change in the average squared error per epoch is sufficiently small.

The rate of change in the average squared error is typically considered to be small
enough if it lies in the range of 0.1 to 1 percent per epoch. Sometimes a value as small
as 0.01 percent per epoch is used. Unfortunately, this criterion may result in a premature
termination of the learning process.

There is another useful, and theoretically supported, criterion for convergence:
After each learning iteration, the network is tested for its generalization performance.
The learning process is stopped when the generalization performance is adequate or
when it is apparent that the generalization performance has peaked; see Section 4.13 for
more details.

Summary of the Back-Propagation Algorithm

Figure 4.1 presents the architectural layout of a multilayer perceptron. The corre-
sponding signal-flow graph for back-propagation learning, incorporating both the for-
ward and backward phases of the computations involved in the learning process, is
presented in Fig. 4.7 for the case of L � 2 and m0 � m1 � m2 � 3. The top part of the
signal-flow graph accounts for the forward pass.The lower part of the signal-flow graph
accounts for the backward pass, which is referred to as a sensitivity graph for comput-
ing the local gradients in the back-propagation algorithm (Narendra and Parthasarathy,
1990).

Earlier, we mentioned that the sequential updating of weights is the preferred
method for on-line implementation of the back-propagation algorithm. For this mode

eav(w)
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of operation, the algorithm cycles through the training sample {(x(n), d(n))}N
n�1 as

follows:

1. Initialization. Assuming that no prior information is available, pick the synap-
tic weights and thresholds from a uniform distribution whose mean is zero and whose
variance is chosen to make the standard deviation of the induced local fields of the neu-
rons lie at the transition between the linear and standards parts of the sigmoid activa-
tion function.

2. Presentations of Training Examples. Present the network an epoch of training
examples. For each example in the sample, ordered in some fashion, perform the sequence
of forward and backward computations described under points 3 and 4, respectively.

3. Forward Computation. Let a training example in the epoch be denoted by (x(n),
d(n)), with the input vector x(n) applied to the input layer of sensory nodes and the
desired response vector d(n) presented to the output layer of computation nodes. Com-
pute the induced local fields and function signals of the network by proceeding forward
through the network, layer by layer.The induced local field for neuron j in layer l
is

(4.44)vj
(l)(n) = a

i
w(l)ji (n)y

(l-1)
i (n)

v(l)j (n)
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where yi
(l-1)(n) is the output (function) signal of neuron i in the previous layer l - 1 at

iteration n, and ji
(l)(n) is the synaptic weight of neuron j in layer l that is fed from neu-

ron i in layer l - 1. For i � 0, we have y0
(l -1)(n) � �1, and j0

(l)(n) � (n) is the bias
applied to neuron j in layer l. Assuming the use of a sigmoid function, the output signal
of neuron j in layer l is

If neuron j is in the first hidden layer (i.e., l � 1), set

where xj(n) is the jth element of the input vector x(n). If neuron j is in the output layer
(i.e., l � L, where L is referred to as the depth of the network), set

Compute the error signal

(4.45)

where dj(n) is the jth element of the desired response vector d(n).
4. Backward Computation. Compute the �s (i.e., local gradients) of the network,

defined by

(4.46)

where the prime in �j�( ) denotes differentiation with respect to the argument. Adjust
the synaptic weights of the network in layer l according to the generalized delta rule

(4.47)

where � is the learning-rate parameter and � is the momentum constant.
5. Iteration. Iterate the forward and backward computations under points 3 and

4 by presenting new epochs of training examples to the network until the chosen stop-
ping criterion is met.

Notes: The order of presentation of training examples should be randomized from epoch to epoch.
The momentum and learning-rate parameter are typically adjusted (and usually decreased) as
the number of training iterations increases. Justification for these points will be presented later.

4.5 XOR PROBLEM

In Rosenblatt’s single-layer perceptron, there are no hidden neurons. Consequently, it
cannot classify input patterns that are not linearly separable. However, nonlinearly sep-
arable patterns commonly occur. For example, this situation arises in the exclusive-OR
(XOR) problem, which may be viewed as a special case of a more general problem,
namely, that of classifying points in the unit hypercube. Each point in the hypercube is
in either class 0 or class 1. However, in the special case of the XOR problem, we need

wji
(l)(n + 1) = w(l)ji (n) + �[¢wji

(l)(n - 1)] + ��
(l)
j (n)yi

(l-1)(n)

�

� j
(l)(n) = • e j

(L)(n)�j¿(v j(L)(n)) for neuron j in output layer L

�j¿ (v j(l)(n))a
k

� k
(l+1)(n)w kj

(l+1)(n) for neuron j in hidden layer l

ej(n) = dj(n) - oj(n)

y(L)j = oj(n)

yj
(0)(n) = xj(n)

y(l)j = �j(vj(n))

b(l)jw
w
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consider only the four corners of a unit square that correspond to the input patterns
(0,0), (0,1), (1,1), and (1,0), where a single bit (i.e., binary digit) changes as we move from
one corner to the next. The first and third input patterns are in class 0, as shown by

0 � 0 � 0

and

1 � 1 � 0

where � denotes the exclusive-OR Boolean function operator.The input patterns (0,0)
and (1,1) are at opposite corners of the unit square, yet they produce the identical
output 0. On the other hand, the input patterns (0,1) and (1,0) are also at opposite
corners of the square, but they are in class 1, as shown by

0 � 1 � 1

and

1 � 0 � 1

We first recognize that the use of a single neuron with two inputs results in a
straight line for a decision boundary in the input space. For all points on one side of this
line, the neuron outputs 1; for all points on the other side of the line, it outputs 0. The
position and orientation of the line in the input space are determined by the synaptic
weights of the neuron connected to the input nodes and the bias applied to the neuron.
With the input patterns (0,0) and (1,1) located on opposite corners of the unit square,
and likewise for the other two input patterns (0,1) and (1,0), it is clear that we cannot
construct a straight line for a decision boundary so that (0,0) and (0,1) lie in one deci-
sion region and (0,1) and (1,0) lie in the other decision region. In other words, the single-
layer perceptron cannot solve the XOR problem.

However, we may solve the XOR problem by using a single hidden layer with two
neurons, as in Fig. 4.8a (Touretzky and Pomerleau, 1989). The signal-flow graph of the
network is shown in Fig. 4.8b. The following assumptions are made here:

• Each neuron is represented by a McCulloch–Pitts model, which uses a threshold
function for its activation function.

• Bits 0 and 1 are represented by the levels 0 and �1, respectively.

The top neuron, labeled as “Neuron 1” in the hidden layer, is characterized as

The slope of the decision boundary constructed by this hidden neuron is equal to -1
and positioned as in Fig. 4.9a. The bottom neuron, labeled as “Neuron 2” in the hidden
layer, is characterized as

 b2 = - 
1
2

 w21 = w22 = + 1

 b1 = - 
3
2

 w11 = w12 = +1

142 Chapter 4 Multilayer Perceptrons



The orientation and position of the decision boundary constructed by this second hid-
den neuron are as shown in Fig. 4.9b.

The output neuron, labeled as “Neuron 3” in Fig. 4.8a, is characterized as

The function of the output neuron is to construct a linear combination of the decision
boundaries formed by the two hidden neurons.The result of this computation is shown
in Fig. 4.9c.The bottom hidden neuron has an excitatory (positive) connection to the out-
put neuron, whereas the top hidden neuron has an inhibitory (negative) connection to
the output neuron.When both hidden neurons are off, which occurs when the input pat-
tern is (0,0), the output neuron remains off. When both hidden neurons are on, which
occurs when the input pattern is (1,1), the output neuron is switched off again because
the inhibitory effect of the larger negative weight connected to the top hidden neuron
overpowers the excitatory effect of the positive weight connected to the bottom hidden
neuron. When the top hidden neuron is off and the bottom hidden neuron is on, which
occurs when the input pattern is (0,1) or (1,0), the output neuron is switched on because
of the excitatory effect of the positive weight connected to the bottom hidden neuron.
Thus, the network of Fig. 4.8a does indeed solve the XOR problem.

 b3 = - 
1
2

 w32 = +  1

 w31 = -2
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4.6 HEURISTICS FOR MAKING THE BACK-PROPAGATION ALGORITHM
PERFORM BETTER

It is often said that the design of a neural network using the back-propagation algo-
rithm is more of an art than a science, in the sense that many of the factors involved in
the design are the results of one’s own personal experience. There is some truth in this
statement. Nevertheless, there are methods that will significantly improve the back-
propagation algorithm’s performance, as described here:

1. Stochastic versus batch update. As mentioned previously, the stochastic
(sequential) mode of back-propagation learning (involving pattern-by-pattern updat-
ing) is computationally faster than the batch mode. This is especially true when the
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training data sample is large and highly redundant. (Highly redundant data pose
computational problems for the estimation of the Jacobian required for the batch
update.)

2. Maximizing information content. As a general rule, every training example pre-
sented to the back-propagation algorithm should be chosen on the basis that its infor-
mation content is the largest possible for the task at hand (LeCun, 1993). Two ways of
realizing this choice are as follows:

• Use an example that results in the largest training error.
• Use an example that is radically different from all those previously used.

These two heuristics are motivated by a desire to search more of the weight space.
In pattern-classification tasks using sequential back-propagation learning, a sim-

ple and commonly used technique is to randomize (i.e., shuffle) the order in which the
examples are presented to the multilayer perceptron from one epoch to the next. Ide-
ally, the randomization ensure that successive examples in an epoch presented to the net-
work rarely belong to the same class.

3. Activation function. Insofar as the speed of learning is concerned, the preferred
choice is to use a sigmoid activation function that is an odd function of its argument, as
shown by

This condition is satisfied by the hyperbolic function

as shown in Fig. 4.10, but not the logistic function. Suitable values for the constraints a
and b in the formula for �(v) are as follows (LeCun, 1993):

and

The hyperbolic tangent function �(v) of Fig. 4.10 has the following useful properties:
• �(1) � 1 and �(-1) � -1.
• At the origin, the slope (i.e., effective gain) of the activation function is close to

unity, as shown by

• The second derivative of �(v) attains its maximum value at v � 1.

 = 1.1424

 = 1.7159 a 2
3
b �(0) = ab

b =
2
3

a = 1.7159

�(v) = a tanh(bv)

�(-v) = -�(v)
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4. Target values. It is important that the target values (desired response) be cho-
sen within the range of the sigmoid activation function. More specifically, the desired
response dj for neuron j in the output layer of the multilayer perceptron should be offset
by some amount � away from the limiting value of the sigmoid activation function,
depending on whether the limiting value is positive or negative. Otherwise, the back-
propagation algorithm tends to drive the free parameters of the network to infinity and
thereby slow down the learning process by driving the hidden neurons into saturation.
To be specific, consider the hyperbolic tangent function of Fig. 4.10. For the limiting
value �a, we set

and for the limiting value of -a, we set

where � is an appropriate positive constant. For the choice of a � 1.7159 used in Fig. 4.10,
we may set � � 0.7159, in which case the target value (desired response) dj can be con-
veniently chosen as "1, as indicated in the figure.

5. Normalizing the inputs. Each input variable should be preprocessed so that its
mean value, averaged over the entire training sample, is close to zero, or else it will be
small compared to its standard deviation (LeCun, 1993).To appreciate the practical sig-
nificance of this rule, consider the extreme case where the input variables are consistently
positive. In this situation, the synaptic weights of a neuron in the first hidden layer can
only increase together or decrease together. Accordingly, if the weight vector of that

dj = -a + �

dj = a - �
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neuron is to change direction, it can do so only by zigzagging its way through the error
surface, which is typically slow and should therefore be avoided.

In order to accelerate the back-propagation learning process, the normalization of
the inputs should also include two other measures (LeCun, 1993):

• The input variables contained in the training set should be uncorrelated; this can
be done by using principal-components analysis, to be discussed in Chapter 8.

• The decorrelated input variables should be scaled so that their covariances are
approximately equal, thereby ensuring that the different synaptic weights in the
network learn at approximately the same speed.

Figure 4.11 illustrates the results of three normalization steps: mean removal, decorre-
lation, and covariance equalization, applied in that order.
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It is also of interest to note that when the inputs are transformed in the manner
illustrated in Fig. 4.11 and used in conjunction with the hyperbolic tangent function
specified in Fig. 4.10, the variance of the individual neural outputs in the multilayer
perceptron will be close to unity (Orr and Müller, 1998). The rationale for this state-
ment is that the effective gain of the sigmoid function over its useful range is roughly
unity.

6. Initialization. A good choice for the initial values of the synaptic weights and
thresholds of the network can be of tremendous help in a successful network design.The
key question is: What is a good choice?

When the synaptic weights are assigned large initial values, it is highly likely that
the neurons in the network will be driven into saturation. If this happens, the local
gradients in the back-propagation algorithm assume small values, which in turn will
cause the learning process to slow down. However, if the synaptic weights are assigned
small initial values, the back-propagation algorithm may operate on a very flat area
around the origin of the error surface; this is particularly true in the case of sigmoid
functions such as the hyperbolic tangent function. Unfortunately, the origin is a saddle
point, which refers to a stationary point where the curvature of the error surface across
the saddle is negative and the curvature along the saddle is positive. For these rea-
sons, the use of both large and small values for initializing the synaptic weights should
be avoided. The proper choice of initialization lies somewhere between these two
extreme cases.

To be specific, consider a multilayer perceptron using the hyperbolic tangent func-
tion for its activation functions. Let the bias applied to each neuron in the network be
set to zero. We may then express the induced local field of neuron j as

Let it be assumed that the inputs applied to each neuron in the network have zero mean
and unit variance, as shown by

and

Let it be further assumed that the inputs are uncorrelated, as shown by

and that the synaptic weights are drawn from a uniformly distributed set of numbers with
zero mean, that is,

and variance

�w
2 = �[(wji - �w)2] = �[w2

ji]  for all (j, i) pairs

�w = �[wji] = 0  for all (j, i) pairs

�[yiyk] = e 1 for k = i

0 for k Z i

�2
y = �[(yi - �i)

2] = �[yi
2] = 1  for all i

�y = �[yi] = 0  for all i

vj = a
m

i = 1
wjiyi
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Accordingly, we may express the mean and variance of the induced local field vj as

and

where m is the number of synaptic connections of a neuron.
In light of this result, we may now describe a good strategy for initializing the

synaptic weights so that the standard deviation of the induced local field of a neuron lies
in the transition area between the linear and saturated parts of its sigmoid activation
function. For example, for the case of a hyperbolic tangent function with parameters a
and b used in Fig. 4.10, this objective is satisfied by setting �v � 1 in the previous equa-
tion, in which case we obtain the following (LeCun, 1993):

(4.48)

Thus, it is desirable for the uniform distribution, from which the synaptic weights are
selected, to have a mean of zero and a variance equal to the reciprocal of the number
of synaptic connections of a neuron.

7. Learning from hints. Learning from a sample of training examples deals with an
unknown input–output mapping function f(·). In effect, the learning process exploits
the information contained in the examples about the function f(·) to infer an approxi-
mate implementation of it. The process of learning from examples may be generalized
to include learning from hints, which is achieved by allowing prior information that we
may have about the function f(·) to be included in the learning process (Abu-Mostafa,
1995). Such information may include invariance properties, symmetries, or any other
knowledge about the function f(·) that may be used to accelerate the search for its
approximate realization and, more importantly, to improve the quality of the final esti-
mate. The use of Eq. (4.48) is an example of how this is achieved.

8. Learning rates. All neurons in the multilayer perceptron should ideally learn at
the same rate. The last layers usually have larger local gradients than the layers at the
front end of the network. Hence, the learning-rate parameter � should be assigned a

�w = m-1�2 

 = m�2
w

 = a
m

i = 1
 �[wji

2]

 = a
m

i = 1
a
m

k = 1
�[wjiwjk]�[yiyk]

 = � c am
i = 1
a
m

k = 1
wjiwjkyiyk d

 �2
v = �[(vj - �v)

2] = �[vj
2]

 �v = �[vj] = � c am
i = 1

wjiyi d = a
m

i = 1
�[wji]�[yi] = 0
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smaller value in the last layers than in the front layers of the multilayer perceptron.
Neurons with many inputs should have a smaller learning-rate parameter than neurons
with few inputs so as to maintain a similar learning time for all neurons in the network.
In LeCun (1993), it is suggested that for a given neuron, the learning rate should be
inversely proportional to the square root of synaptic connections made to that neuron.

4.7 COMPUTER EXPERIMENT: PATTERN CLASSIFICATION

In this computer experiment, we resume the sequence of pattern-classification experi-
ments performed first in Chapter 1 using Rosenblatt’s perceptron and then in Chapter 2
using the method of least squares. For both experiments, we used training and test data
generated by randomly sampling the double-moon structure pictured in Fig. 1.8. In each
of the experiments, we considered two cases, one employing linearly separable patterns
and the other employing nonlinearly separable patterns. The perceptron worked per-
fectly fine for the linearly separable setting of d � 1, but the method of least squares
required a larger separation between the two moons for perfect classification. In any
event, they both failed the nonlinearly separable setting of d � -4.

The objective of the computer experiment presented herein is twofold:

1. to demonstrate that the multilayer perceptron, trained with the back-propagation
algorithm, is capable of classifying nonlinearly separable test data;

2. to find a more difficult case of nonlinearly separable patterns for which the mul-
tilayer perceptron fails the double-moon classification test.

The specifications of the multilayer perceptron used in the experiment are as follows:

Size of the input layer: m0 � 2
Size of the (only) hidden layer: m1 � 20
Size of the output layer: m2 � 1

Activation function: hyperbolic tangent function 

Threshold setting: zero
Learning-rate parameter �: annealed linearly from 10-1 down to 10-5

The experiment is carried out in two parts, one corresponding to the vertical separation
d � -4, and the other corresponding to d � -5:

(a) Vertical separation d � �4.
Figure 4.12 presents the results of the MLP experiment for the length of separa-
tion between the two moons of d � �4. Part (a) of the figure displays the learn-
ing curve resulting from the training session. We see that the learning curve
reached convergence effectively in about 15 epochs of training. Part (b) of the
figure displays the optimal nonlinear decision boundary computed by the MLP.
Most important, perfect classification of the two patterns was achieved, with no
classification errors.This perfect performance is attributed to the hidden layer of
the MLP.

�(v) =
1 - exp(-2v)

1 + exp(-2v)
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FIGURE 4.12 Results of the computer experiment on the back-propagation algorithm applied
to the MLP with distance d � �4. MSE stands for mean-square error.
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FIGURE 4.13 Results of the computer experiment on the back-propagation algorithm applied
to the MLP with distance d � -5.



(b) Vertical separation d � �5.
To challenge the multilayer perceptron with a more difficult pattern-classification
task, we reduced the vertical separation between the two moons to d � -5.The re-
sults of this second part of the experiment are presented in Fig. 4.13. The learning
curve of the back-propagation algorithm, plotted in part (a) of the figure, shows a
slower rate of convergence, roughly three times that for the easier case of d � -4.
Moreover, the testing results plotted in part (b) of the figure reveal three classifi-
cation errors in a testing set of 2,000 data points, representing an error rate of 0.15
percent.

The decision boundary is computed by finding the coordinates and pertain-
ing to the input vector x, for which the response of the output neuron is zero on the
premise that the two classes of the experiment are equally likely. Accordingly, when a
threshold of zero is exceeded, a decision is made in favor of one class; otherwise, the
decision is made in favor of the other class.This procedure is followed on all the double-
moon classification experiments reported in the book.

4.8 BACK PROPAGATION AND DIFFERENTIATION

Back propagation is a specific technique for implementing gradient descent in weight
space for a multilayer perceptron.The basic idea is to efficiently compute partial deriv-
atives of an approximating function F(w, x) realized by the network with respect to all
the elements of the adjustable weight vector w for a given value of input vector x. Herein
lies the computational power of the back-propagation algorithm.4

To be specific, consider a multilayer perceptron with an input layer of m0 nodes,
two hidden layers, and a single output neuron, as depicted in Fig. 4.14. The elements of
the weight vector w are ordered by layer (starting from the first hidden layer), then by
neurons in a layer, and then by the number of a synapse within a neuron. Let w(l)

ji denote
the synaptic weight from neuron i to neuron j in layer l � 1, 2, .... For l � 1, corre-
sponding to the first hidden layer, the index i refers to a source node rather than to a

x2x1
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neuron. For l � 3, corresponding to the output layer in Fig. 4.14, we have j � 1.We wish
to evaluate the derivatives of the function F(w, x) with respect to all the elements of the
weight vector w for a specified input vector . We have included the
weight vector w as an argument of the function F in order to focus attention on it. For
example, for l � 2 (i.e., a single hidden layer and a linear output layer), we have

(4.49)

where w is the ordered weight vector and x is the input vector.
The multilayer perceptron of Fig. 4.14 is parameterized by an architecturea (rep-

resenting a discrete parameter) and a weight vector w (made up of continuous elements).
Let aj

(l) denote that part of the architecture extending from the input layer (l � 0) to
node j in layer l � 1, 2, 3. Accordingly, we may write

(4.50)

where is the activation function. However,a1
(3) is to be interpreted merely as an archi-

tectural symbol rather than a variable.Thus, adapting Eqs. (4.2), (4.4), (4.13), and (4.25)
for use in this new situation, we obtain the formulas

(4.51)

(4.52)

(4.53)

where � is the partial derivative of the nonlinearity with respect to its argument and
xi is the ith element of the input vector x. In a similar way, we may derive the equations
for the partial derivatives of a general network with more hidden layers and more neu-
rons in the output layer.

Equations (4.51) through (4.53) provide the basis for calculating the sensitivity of
the network function F(w, x) with respect to variations in the elements of the weight vec-
tor w. Let denote an element of the weight vector w. The sensitivity of F(w, x) with
respect to , is formally defined by

It is for this reason that we refer to the lower part of the signal-flow graph in Fig. 4.7 as
a “sensitivity graph.”

The Jacobian

Let W denote the total number of free parameters (i.e., synaptic weights and biases) of
a multilayer perceptron, which are ordered in a manner described to form the weight vec-
tor w. Let N denote the total number of examples used to train the network. Using back

SF
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propagation, we may compute a set of W partial derivatives of the approximating func-
tion F[w, x(n)] with respect to the elements of the weight vector w for a specific exam-
ple x(n) in the training sample. Repeating these computations for n � 1, 2, ..., N, we end
up with an N-by-W matrix of partial derivatives. This matrix is called the Jacobian J of
the multilayer perceptron evaluated at x(n). Each row of the Jacobian corresponds to a
particular example in the training sample.

There is experimental evidence to suggest that many neural network training
problems are intrinsically ill conditioned, leading to a Jacobian J that is almost rank
deficient (Saarinen et al., 1991).The rank of a matrix is equal to the number of linearly
independent columns or rows in the matrix, whichever one is smallest. The Jacobian
J is said to be rank deficient if its rank is less than min (N, W). Any rank deficiency
in the Jacobian causes the back-propagation algorithm to obtain only partial infor-
mation of the possible search directions. Rank deficiency also causes training times
to be long.

4.9 THE HESSIAN AND ITS ROLE IN ON-LINE LEARNING

The Hessian matrix, or simply the Hessian, of the cost function , denoted by H, is
defined as the second derivative of with respect to the weight vector w, as shown
by

(4.54)

The Hessian plays an important role in the study of neural networks; specifically, we
mention the following points5:

1. The eigenvalues of the Hessian have a profound influence on the dynamics of
back-propagation learning.

2. The inverse of the Hessian provides a basis for pruning (i.e., deleting) insignifi-
cant synaptic weights from a multilayer perceptron; this issue will be discussed in
Section 4.14.

3. The Hessian is basic to the formulation of second-order optimization methods as
an alternative to back-propagation learning, to be discussed in Section 4.16.

In this section, we confine our attention to point 1.
In Chapter 3, we indicated that the eigenstructure of the Hessian has a pro-

found influence on the convergence properties of the LMS algorithm. So it is also
with the back-propagation algorithm, but in a much more complicated way. Typically,
the Hessian of the error surface pertaining to a multilayer perceptron trained with the
back-propagation algorithm has the following composition of eigenvalues (LeCun
et al., 1998):

• a small number of small eigenvalues,
• a large number of medium-sized eigenvalues, and
• a small number of large eigenvalues.

There is therefore a wide spread in the eigenvalues of the Hessian.

H =
02eav(w)

0w2

eav(w)
eav(w)
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The factors affecting the composition of the eigenvalues may be grouped as follows:

• nonzero-mean input signals or nonzero-mean induced neural output signals;
• correlations between the elements of the input signal vector and correlations

between induced neural output signals;
• wide variations in the second-order derivatives of the cost function with respect to

synaptic weights of neurons in the network as we proceed from one layer to the
next. These derivatives are often smaller in the lower layers, with the synaptic
weights in the first hidden layer learning slowly and those in the last layers learn-
ing quickly.

Avoidance of Nonzero-mean Inputs

From Chapter 3, we recall that the learning time of the LMS algorithm is sensitive to vari-
ations in the condition number �max/�min, where �max is the largest eigenvalue of the Hes-
sian and �min is its smallest nonzero eigenvalue. Experimental results show that a similar
situation holds for the back-propagation algorithm, which is a generalization of the LMS
algorithm. For inputs with nonzero mean, the ratio �max/�min is larger than its corre-
sponding value for zero-mean inputs: The larger the mean of the inputs, the larger the
ratio �max/�min will be. This observation has a serious implication for the dynamics of
back-propagation learning.

For the learning time to be minimized, the use of nonzero-mean inputs should be
avoided. Now, insofar as the signal vector x applied to a neuron in the first hidden layer
of a multilayer perceptron (i.e., the signal vector applied to the input layer) is concerned,
it is easy to remove the mean from each element of x before its application to the network.
But what about the signals applied to the neurons in the remaining hidden and output
layers of the network? The answer to this question lies in the type of activation function
used in the network. In the case of the logistic function, the output of each neuron is
restricted to the interval [0, 1]. Such a choice acts as a source of systematic bias for those
neurons located beyond the first hidden layer of the network.To overcome this problem,
we need to use the hyperbolic tangent function that is odd symmetric. With this latter
choice, the output of each neuron is permitted to assume both positive and negative val-
ues in the interval [-1, 1], in which case it is likely for its mean to be zero. If the network
connectivity is large, back-propagation learning with odd-symmetric activation functions
can yield faster convergence than a similar process with nonsymmetric activation functions.
This condition provides the justification for heuristic 3 described in Section 4.6.

Asymptotic Behavior of On-line Learning

For a good understanding of on-line learning,we need to know how the ensemble-averaged
learning curve evolves across time. Unlike the LMS algorithm, this calculation is unfor-
tunately much too difficult to perform. Generally speaking, the error-performance sur-
face may have exponentially many local minima and multiple global minima because of
symmetry properties of the network. Surprisingly, this characteristic of the error-
performance surface may turn out to be a useful feature in the following sense: Given
that an early-stopping method is used for network training (see Section 4.13) or the
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network is regularized (see Section 4.14), we may nearly always find ourselves “close”
to a local minimum.

In any event, due to the complicated nature of the error-performance surface, we
find that in the literature, statistical analysis of the learning curve is confined to its asymp-
totic behavior in the neighborhood of a local minimum. In this context, we may highlight
some important aspects of this asymptotic behavior, assuming a fixed learning-rate
parameter, as follows (Murata, 1998):

(i) The learning curve consists of three terms:
• minimal loss, determined by the optimal parameter w*, which pertains to a local

or global minimum;
• additional loss, caused by fluctuations in evolution of the weight-vector esti-

mator w(n) around the mean

• a time-dependent term, describing the effect of decreasing speed of error con-
vergence on algorithmic performance.

(ii) To ensure stability of the on-line learning algorithm, the learning-rate parameter
� must be assigned a value smaller than the reciprocal of the largest eigenvalue of
the Hessian, 1/�max. On the other hand, the speed of convergence of the algorithm
is dominated by the smallest eigenvalue of the Hessian, �min.

(iii) Roughly speaking, if the learning-rate parameter � is assigned a large value, then
the speed of convergence is fast, but there will be large fluctuations around the local
or global minimum, even if the number of iterations, n, approaches infinity.
Conversely, if � is small, then the extent of fluctuations is small, but the speed of
convergence will be slow.

4.10 OPTIMAL ANNEALING AND ADAPTIVE CONTROL 
OF THE LEARNING RATE

In Section 4.2, we emphasized the popularity of the on-line learning algorithm for two
main reasons:

(i) The algorithm is simple, in that its implementation requires a minimal amount of
memory, which is used merely to store the old value of the estimated weight vec-
tor from one iteration to the next.

(ii) With each example {x, d} being used only once at every time-step, the learning
rate assumes a more important role in on-line learning than in batch learning,
in that the on-line learning algorithm has the built-in ability to track statistical
variations in the environment responsible for generating the training set of
examples.

In Amari (1967) and, more recently, Opper (1996), it is shown that optimally annealed
on-line learning is enabled to operate as fast as batch learning in an asymptotic sense. This
issue is explored in what follows.

lim
n S q

�[ŵ(n)] = w*
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Optimal Annealing of the Learning Rate

Let w denote the vector of synaptic weights in the network, stacked up on top of each
other in some orderly fashion. With (n) denoting the old estimate of the weight vector
w at time-step n, let (n�1) denote the updated estimate of w on receipt of the “input-ŵ

ŵ
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desired response” example {x(n�1), d(n�1)}. Correspondingly, let F(x(n�1); (n)) denoteŵ
the vector-valued output of the network produced in response to the input x(n�1); natu-
rally the dimension of the function F must be the same as that of the desired response
vector d(n). Following the defining equation of Eq. (4.3), we may express the instanta-
neous energy as the squared Euclidean norm of the estimation error, as shown by

(4.55)

The mean-square error, or expected risk, of the on-line learning problem is defined by

(4.56)

where �x,d is the expectation operator performed with respect to the example {x, d}.The
solution

(4.57)

defines the optimal parameter vector.
The instantaneous gradient vector of the learning process is defined by

(4.58)

where

(4.59)

With the definition of the gradient vector just presented, we may now express the on-
line learning algorithm as

(4.60)

or, equivalently,

(4.61)

Given this difference equation, we may go on to describe the ensemble-averaged
dynamics of the weight vector w in the neighborhood of the optimal parameter w* by
the continuous differential equation

(4.62)
d

dt
ŵ(t) = - �(t)�x,d[g(x(t), d(t); ŵ(t))]

ŵ(n + 1) = ŵ(n) + �(n)[d(n + 1) - F(x(n + 1); ŵ(n))] F¿(x(n + 1); ŵ(n))

ŵ(n + 1) = ŵ(n) - �(n)g(x(n + 1), d(n + 1); ŵ(n))

F¿(x; w) =
0

0w
 F(x; w)

 = - (d(n) - F(x(n); w)F¿(x(n); w)

g(x(n), d(n); w) =
0

0w
 e(x(n), d(n); w)

w* = arg min
w

[J(w)]

J(w) = �x,d[e(x, d; w)]

e(x(n), d(n); w) =
1
2

 7d(n) - F(x(n); w)7 2



where t denotes continuous time. Following Murata (1998), the expected value of the gra-
dient vector is approximated by

(4.63)

where the ensembled-averaged matrix K* is itself defined by

(4.64)

The new Hessian K* is a positive-definite matrix defined differently from the Hessian
H of Eq. (4.54). However, if the environment responsible for generating the training
examples {x, d} is ergodic, we may then substitute the Hessian H, based on time aver-
aging, for the Hessian K*, based on ensemble-averaging. In any event, using Eq. (4.63)
in Eq. (4.62), we find that the continuous differential equation describing the evolution
of the estimator may be approximated as

(4.65)

Let the vector q denote an eigenvector of the matrix K*, as shown by the defining
equation

(4.66)

where � is the eigenvalue associated with the eigenvector q.We may then introduce the
new function

(4.67)

which, in light of Eq. (4.63), may itself be approximated as

(4.68)

At each instant of time t, the function �(t) takes on a scalar value, which may be viewed
as an approximate measure of the Euclidean distance between two projections onto the
eigenvector q, one due to the optimal parameter w* and the other due to the estimator

.The value of �(t) is therefore reduced to zero if, and when, the estimator con-
verges to w*.

ŵ(t)ŵ(t)

= -
qT(w* - ŵ(t))

�(t) L -qTK*(w* - ŵ(t))

�(t) = �x,d[qTg(x, d; ŵ(t))]

K*q = 
q

d

dt
 ŵ(t) L -  �(t)K*(w* - ŵ(t))

ŵ(t)

 = �x,d c 02

0w2
 e(x, d; w) d

K* = �x,d c 0
0w

g(x, d; w) d
�x,d[g(x, d; ŵ(t))] L -K*(w* - ŵ(t))
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From Eqs. (4.65), (4.66), and (4.68), we find that the function �(t) is related to the
time-varying learning-rate parameter �(t) as follows:

(4.69)

This differential equation may be solved to yield

(4.70)

where c is a positive integration constant.

�(t) = c exp(-
��(t)dt)

d

dt
 �(t) = -
�(t)�(t)



the exponent be large compared with unity, which may be satisfied by setting �0 � �/�
for positive �.

Now, there remains only the issue of how to choose the eigenvector q. From the
previous section, we recall that the convergence speed of the learning curve is domi-
nated by the smallest eigenvalue �min of the Hessian H. With this Hessian and the new
Hessian K* tending to behave similarly, a clever choice is to hypothesize that for a
sufficiently large number of iterations, the evolution of the estimator (t) over time t may
be considered as a one-dimensional process, running “almost parallel” to the eigenvector
of the Hessian K* associated with the smallest eigenvalue �min, as illustrated in Fig. 4.15.
We may thus set

(4.73)

where the normalization is introduced to make the eigenvector q assume unit Euclidean
length. Correspondingly, the use of this formula in Eq. (4.67) yields

(4.74)

We may now summarize the results of the discussion presented in this section by
making the following statements:

1. The choice of the annealing schedule described in Eq. (4.71) satisfies the two con-
ditions

(4.75)a
t

�(t) S q and a
t

�2(t) 7 q, as t S q

�(t) = 7�x,d[g(x, d; ŵ(t))] 7
q =

�x,d[g(x, d; ŵ  )]7�x,d[g(x, d; ŵ  )] 7

ŵ

Following the annealing schedule due to Darken and Moody (1991) that was dis-
cussed in Chapter 3 on the LMS algorithm, let the formula

(4.71)

account for dependence of the learning-rate on time t, where � and �0 are positive tun-
ing parameters. Then, substituting this formula into Eq. (4.70), we find that the corre-
sponding formula tor the function (t) is

(4.72)

For (t) to vanish as time t approaches infinity, we require that the product term ���0 in�

�(t) = c(t + �)-
��0

�

�(t) =
�

t + �
 �0
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FIGURE 4.15 The evolution of the estimator over time t. The ellipses represent
contours of the expected risk for varying values of w, assumed to be two-dimensional.
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In other words, �(t) satisfies the requirements of stochastic approximation theory
(Robbins and Monro, 1951).

2. As time t approaches infinity, the function (t) approaches zero asymptotically. In
accordance with Eq. (4.68), it follows that the estimator approaches the opti-
mal estimator w* as t approaches infinity.

3. The ensemble-averaged trajectory of the estimator is almost parallel to the
eigenvector of the Hessian K* associated with the smallest eigenvalue �min after a
large enough number of iterations.

4. The optimally annealed on-line learning algorithm for a network characterized by
the weight vector w is collectively described by the following set of three equations:

(4.76)

Here, it is assumed that the environment responsible for generating the training
examples {x, d} is ergodic, so that the ensemble-averaged Hessian K* assumes the
same value as the time-averaged Hessian H.

5. When the learning-rate parameter �0 is fixed in on-line learning based on stochas-
tic gradient descent, stability of the algorithm requires that we choose �0  l$�max,
where �max is the largest eigenvalue of the Hessian H. On the other hand, in the
case of optimally annealed stochastic gradient descent, according to the third line
of Eq. (4.76), the choice is �0  1$�min, where �min is the smallest eigenvalue of H.

6. The time constant nswitch, a positive integer, defines the transition from a regime of
fixed �0 to the annealing regime, where the time-varying learning-rate parameter
�(n) assumes the desired form c/n, where c is a constant, in accordance with sto-
chastic approximation theory.

Adaptive Control of the Learning Rate

The optimal annealing schedule, described in the second line of Eq. (4.76), provides an
important step in improved utilization of on-line learning. However, a practical limita-
tion of this annealing schedule is the requirement that we know the time constant �switch

a priori.A practical issue of concern, then, is the fact that when the application of inter-
est builds on the use of on-line learning in a nonstationary environment where the sta-
tistics of the training sequence change from one example to the next, the use of a
prescribed time constant nswitch may no longer be a realistic option. In situations of this
kind, which occur frequently in practice, the on-line learning algorithm needs to be
equipped with a built-in mechanism for the adaptive control of the learning rate. Such

�0 =
�


min
,  � = positive constant

�(n) =
nswitch

n + nswitch
 �0

ŵ(n + 1) = ŵ(n) + �(n)(d(n + 1) - F(x(n) + 1; ŵ(n))F¿(x(n + 1); ŵ(n))

ŵ(t)

ŵ(t)
�
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a mechanism was first described in the literature by Murata (1998), in which the so-
called learning of the learning algorithm (Sompolinsky et al., 1995) was appropriately
modified.

The adaptive algorithm due to Murata is configured to achieve two objectives:

1. automatic adjustment of the learning rate, which accounts for statistical variations
in the environment responsible for generation of the training sequence of examples;

2. generalization of the on-line learning algorithm so that its applicability is broad-
ened by avoiding the need for a prescribed cost function.

To be specific, the ensemble-averaged dynamics of the weight vector w, defined in
Eq. (4.62), is now rewritten as6

(4.77)

where the vector-valued function f(·, ·; ·) denotes flow that determines the change applied
to the estimator in response to the incoming example {x(t), d(t)}. The flow f is
required to satisfy the condition

(4.78)

where w* is the optimal value of the weight vector w, as previously defined in Eq. (4.57).
In other words, the flow f must asymptotically converge to the optimal parameter w*
across time t. Moreover, for stability, we also require that the gradient of f should be a
positive-definite matrix.The flow f includes the gradient vector g in Eq. (4.62) as a spe-
cial case.

The previously defined equations of Eqs. (4.63) through (4.69) apply equally well
to Murata’s algorithm. Thereafter, however, the assumption made is that the evolution
of the learning rate �(t) across time t is governed by a dynamic system that comprises
the pair of differential equations

(4.79)

and

(4.80)

where it should be noted that (t) is always positive and � and � are positive constants.
The first equation of this dynamic system is a repeat of Eq. (4.69).The second equation
of the system is motivated by the corresponding differential equation in the learning of
the learning algorithm described in Sompolinsky et al. (1995).7

As before, the � in Eq. (4.79) is the eigenvalue associated with the eigenvector q
of the Hessian K*. Moreover, it is hypothesized that q is chosen as the particular eigen-
vector associated with the smallest eigenvalue �min.This, in turn, means that the ensemble-
averaged flow f converges to the optimal parameter w* in a manner similar to that
previously described, as depicted in Fig. 4.15.

�

d

dt
 �(t) = ��(t)(��(t) - �(t))

d

dt
 �(t) = -
�(t)�(t)

�x,d[f(x, d; w*)] = 0

ŵ(t)

d

dt
 ŵ(t) = -�(t)�x,d[f(x(t), d(t); ŵ(t))]
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The asymptotic behavior of the dynamic system described in Eqs. (4.79) and (4.80)
is given by the corresponding pair of equations

(4.81)

and

(4.82)

The important point to note here is that this new dynamic system exhibits the desired
annealing of the learning rate �(t)—namely, c/t for large t—which is optimal for any esti-
mator converging to w*, as previously discussed.

In light of the considerations just presented, we may now formally describe the
Murata adaptive algorithm for on-line learning in discrete time as follows (Murata, 1998;
Müller et al., 1998):

(4.83)

(4.84)

(4.85)

The following points are noteworthy in the formulation of this discrete-time system of
equations:

• Equation (4.83) is simply the instantaneous discrete-time version of the differen-
tial equation of Eq. (4.77).

• Equation (4.84) includes an auxiliary vector r(n), which has been introduced to
account for the continuous-time function �(t). Moreover, this second equation
of the Murata adaptive algorithm includes a leakage factor whose value � controls
the running average of the flow f.

• Equation (4.85) is a discrete-time version of the differential equation Eq. (4.80).The
updated auxiliary vector r(n � 1) included in Eq. (4.85) links it to Eq. (4.84); in so
doing, allowance is made for the linkage between the continuous-time functions (t)
and �(t) previously defined in Eqs. (4.79) and (4.80).

Unlike the continuous-time dynamic system described in Eqs. (4.79) and (4.80), the
asymptotic behavior of the learning-rate parameter �(t) in Eq. (4.85) does not converge
to zero as the number of iterations, n, approaches infinity, thereby violating the
requirement for optimal annealing. Accordingly, in the neighborhood of the optimal
parameter w*, we now find that for the Murata adaptive algorithm:

(4.86)

This asymptotic behavior is different from that of the optimally annealed on-line learn-
ing algorithm of Eq. (4.76). Basically, the deviation from optimal annealing is attributed
to the use of a running average of the flow in Eq. (4.77), the inclusion of which was moti-
vated by the need to account for the algorithm not having access to a prescribed cost

lim
n S q  ŵ(n) Z w*

�

�

�(n + 1) = �(n) + ��(n)(� 7r(n + 1) 7 - �(n))

r(n + 1) = r(n) + �f(x(n + 1), d(n + 1); ŵ(n)),  0 6 � 6 1

ŵ(n + 1) = ŵ(n) - �(n)f(x(n + 1), d(n + 1); ŵ(n))
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function, as was the case in deriving the optimally annealed on-line learning algorithm
of Eq. (4.76).

The learning of the learning rule is useful when the optimal varies with time n
slowly (i.e., the environment responsible for generating the examples is nonstationary)
or it changes suddenly. On the other hand, the 1/n rule is not a good choice in such an
environment, because �n becomes very small for large n, causing the 1/n rule to lose its
learning capability. Basically, the difference between the optimally annealed on-learning
algorithm of Eq. (4.76) and the on-line learning algorithm described in Eqs. (4.83) to
(4.85) is that the latter has a built-in mechanism for adaptive control of the learning
rate—hence its ability to track variations in the optimal .

A final comment is in order: Although the Murata adaptive algorithm is indeed
suboptimal insofar as annealing of the learning-rate parameter is concerned, its impor-
tant virtue is the broadened applicability of on-line learning in a practically imple-
mentable manner.

4.11 GENERALIZATION

In back-propagation learning, we typically start with a training sample and use the back-
propagation algorithm to compute the synaptic weights of a multilayer perceptron by
loading (encoding) as many of the training examples as possible into the network. The
hope is that the neural network so designed will generalize well. A network is said to
generalize well when the input–output mapping computed by the network is correct (or
nearly so) for test data never used in creating or training the network; the term “gener-
alization” is borrowed from psychology. Here, it is assumed that the test data are drawn
from the same population used to generate the training data.

The learning process (i.e., training of a neural network) may be viewed as a “curve-
fitting” problem.The network itself may be considered simply as a nonlinear input–output
mapping. Such a viewpoint then permits us to look at generalization not as a mystical
property of neural networks, but rather simply as the effect of a good nonlinear inter-
polation of the input data.The network performs useful interpolation primarily because
multilayer perceptrons with continuous activation functions lead to output functions
that are also continuous.

Figure 4.16a illustrates how generalization may occur in a hypothetical network.
The nonlinear input–output mapping represented by the curve depicted in this figure is
computed by the network as a result of learning the points labeled as “training data.”
The point marked in red on the curve as “generalization” is thus seen as the result of
interpolation performed by the network.

A neural network that is designed to generalize well will produce a correct
input–output mapping even when the input is slightly different from the examples used
to train the network, as illustrated in the figure.When, however, a neural network learns
too many input–output examples, the network may end up memorizing the training
data. It may do so by finding a feature (due to noise, for example) that is present in the
training data, but not true of the underlying function that is to be modeled. Such a phe-
nomenon is referred to as overfitting or overtraining. When the network is overtrained,
it loses the ability to generalize between similar input–output patterns.

ŵ*

ŵ*
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Ordinarily, loading data into a multilayer perceptron in this way requires the use of
more hidden neurons than are actually necessary, with the result that undesired contri-
butions in the input space due to noise are stored in synaptic weights of the network.An
example of how poor generalization due to memorization in a neural network may occur
is illustrated in Fig. 4.16b for the same data as depicted in Fig. 4.16a. “Memorization” is
essentially a “look-up table,” which implies that the input–output mapping computed by
the neural network is not smooth.As pointed out in Poggio and Girosi (1990a), smooth-
ness of input–output mapping is closely related to such model-selection criteria as Occam’s
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razor, the essence of which is to select the “simplest” function in the absence of any prior
knowledge to the contrary. In the context of our present discussion, the simplest function
means the smoothest function that approximates the mapping for a given error criterion,
because such a choice generally demands the fewest computational resources. Smooth-
ness is also natural in many applications, depending on the scale of the phenomenon
being studied. It is therefore important to seek a smooth nonlinear mapping for ill-posed
input–output relationships, so that the network is able to classify novel patterns correctly
with respect to the training patterns (Wieland and Leighton, 1987).

Sufficient Training-Sample Size for a Valid Generalization

Generalization is influenced by three factors: (1) the size of the training sample and
how representative the training sample is of the environment of interest, (2) the archi-
tecture of the neural network, and (3) the physical complexity of the problem at hand.
Clearly, we have no control over the lattermost factor. In the context of the other two
factors, we may view the issue of generalization from two different perspectives:

• The architecture of the network is fixed (hopefully in accordance with the physical
complexity of the underlying problem), and the issue to be resolved is that of deter-
mining the size of the training sample needed for a good generalization to occur.

• The size of the training sample is fixed, and the issue of interest is that of deter-
mining the best architecture of network for achieving good generalization.

Both of these viewpoints are valid in their own individual ways.
In practice, it seems that all we really need for a good generalization is to have the

size of the training sample, N, satisfy the condition

(4.87)

where W is the total number of free parameters (i.e., synaptic weights and biases) in the
network, � denotes the fraction of classification errors permitted on test data (as in pat-
tern classification), and O(·) denotes the order of quantity enclosed within. For exam-
ple, with an error of 10 percent, the number of training examples needed should be
about 10 times the number of free parameters in the network.

Equation (4.87) is in accordance with Widrow’s rule of thumb for the LMS algo-
rithm, which states that the settling time for adaptation in linear adaptive temporal fil-
tering is approximately equal to the memory span of an adaptive tapped-delay-line filter
divided by the misadjustment (Widrow and Stearns, 1985; Haykin, 2002). The misad-
justment in the LMS algorithm plays a role somewhat analogous to the error � in
Eq. (4.87). Further justification for this empirical rule is presented in the next section.

4.12 APPROXIMATIONS OF FUNCTIONS

A multilayer perceptron trained with the back-propagation algorithm may be viewed
as a practical vehicle for performing a nonlinear input–output mapping of a general
nature.To be specific, let m0 denote the number of input (source) nodes of a multilayer

N = O aW
� b  
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perceptron, and let M � mL denote the number of neurons in the output layer of the
network. The input–output relationship of the network defines a mapping from an
m0-dimensional Euclidean input space to an M-dimensional Euclidean output space,
which is infinitely continuously differentiable when the activation function is likewise. In
assessing the capability of the multilayer perceptron from this viewpoint of input–output
mapping, the following fundamental question arises:

What is the minimum number of hidden layers in a multilayer perceptron with an input–output
mapping that provides an approximate realization of any continuous mapping?

Universal Approximation Theorem

The answer to this question is embodied in the universal approximation theorem8 for a
nonlinear input–output mapping, which may be stated as follows:

Let �(·) be a nonconstant, bounded, and monotone-increasing continuous function. Let Im0
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denote the m0-dimensional unit hypercube . The space of continuous functions on Im0
[0, 1]m0

is denoted by . Then, given any function and � 0, there exist an integer �f � C(Im0
)C(Im0

)
m1 and sets of real constants �i, bi, and wij, where i � 1, m1 and j � 1, m0 such that we
may define

(4.88)

as an approximate realization of the function f(·); that is,

for all that lie in the input space.

The universal approximation theorem is directly applicable to multilayer percep-
trons. We first note, for example, that the hyperbolic tangent function used as the non-
linearity in a neural model for the construction of a multilayer perceptron is indeed a
nonconstant, bounded, and monotone-increasing function; it therefore satisfies the con-
ditions imposed on the function �(·) Next, we note that Eq. (4.88) represents the out-
put of a multilayer perceptron described as follows:

1. The network has m0 input nodes and a single hidden layer consisting of m1 neu-
rons; the inputs are denoted by .

2. Hidden neuron i has synaptic weights , and bias bi.
3. The network output is a linear combination of the outputs of the hidden neurons,

with defining the synaptic weights of the output layer.

The universal approximation theorem is an existence theorem in the sense that it
provides the mathematical justification for the approximation of an arbitrary continu-
ous function as opposed to exact representation. Equation (4.88), which is the back-
bone of the theorem, merely generalizes approximations by finite Fourier series. In
effect, the theorem states that a single hidden layer is sufficient for a multilayer percep-
tron to compute a uniform approximation to a given training set represented by the
set of inputs and a desired (target) output . However, the theoremf(x1, ..., xm0

)x1, ..., xm0

�

�1, ..., �m1

wi1
, ..., wm0

x1, ... , xm0

x1, x2, ..., xm0

�F(x1, ..., xm0
) - f(x1, ..., xm0

)�
 

6
  
ε

F(x1, ... , xm0
) = a
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i = 1
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j = 1
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does not say that a single hidden layer is optimum in the sense of learning time, ease of
implementation, or (more importantly) generalization.

Bounds on Approximation Errors

Barron (1993) has established the approximation properties of a multilayer perceptron,
assuming that the network has a single layer of hidden neurons using sigmoid functions
and a linear output neuron. The network is trained using the back-propagation algo-
rithm and then tested with new data. During training, the network learns specific points
of a target function f in accordance with the training data and thereby produces the
approximating function F defined in Eq. (4.88). When the network is exposed to test
data that have not been seen before, the network function F acts as an “estimator” of new
points of the target function; that is, .

A smoothness property of the target function f is expressed in terms of its Fourier
representation. In particular, the average of the norm of the frequency vector weighted
by the Fourier magnitude distribution is used as a measure for the extent to which the
function f oscillates. Let denote the multidimensional Fourier transform of the
function f(x), the m0-by-1 vector  is the frequency vector.The function f(x) is
defined in terms of its Fourier transform by the inverse formula

(4.89)

where . For the complex-valued function for which is integrable,
we define the first absolute moment of the Fourier magnitude distribution of the function
f as

(4.90)

where is the Euclidean norm of  and is the absolute value of . The
first absolute moment Cf quantifies the smoothness of the function f.

The first absolute moment Cf provides the basis for a bound on the error that
results from the use of a multilayer perceptron represented by the input–output map-
ping function F(x) of Eq. (4.88) to approximate f(x). The approximation error is mea-
sured by the integrated squared error with respect to an arbitrary probability measure
� on the ball of radius r � 0. On this basis, we may state the follow-
ing proposition for a bound on the approximation error given by Barron (1993):

For every continuous function f(x) with finite first moment Cf and every m1 � 1, there exists
a linear combination of sigmoid-based functions F(x) of the form defined in Eq. (4.88) such
that when the function f(x) is observed at a set of values of the input vector x denoted by
{xi}

N
i�1 that are restricted to lie inside the prescribed ball of radius r, the result provides the fol-

lowing bound on the empirical risk:

(4.91)

where Cf¿ = (2rCf)2.
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In Barron (1992), the approximation result of Eq. (4.91) is used to express the bound on
the risk resulting from the use of a multilayer perceptron with m0 input nodes
and m1 hidden neurons as follows:

(4.92)

The two terms in the bound on the risk express the tradeoff between two con-
flicting requirements on the size of the hidden layer:

1. Accuracy of best approximation. For this requirement to be satisfied, the size of
the hidden layer, m1, must be large in accordance with the universal approxima-
tion theorem.

2. Accuracy of empirical fit to the approximation. To satisfy this second requirement,
we must use a small ratio m1/N. For a fixed size of training sample, N, the size of
the hidden layer, m1, should be kept small, which is in conflict with the first
requirement.

The bound on the risk described in Eq. (4.92) has other interesting impli-
cations. Specifically, we see that an exponentially large sample size, large in the dimen-
sionality m0 of the input space, is not required to get an accurate estimate of the target
function, provided that the first absolute moment Cf remains finite. This result makes
multilayer perceptrons as universal approximators even more important in practical
terms.

The error between the empirical fit and the best approximation may be viewed as
an estimation error. Let �0 denote the mean-square value of this estimation error.Then,
ignoring the logarithmic factor logN in the second term of the bound in Eq. (4.92), we
may infer that the size N of the training sample needed for a good generalization is
about m0m1/�0. This result has a mathematical structure similar to the empirical rule
of Eq. (4.87), bearing in mind that m0m1 is equal to the total number of free para-
meters W in the network. In other words, we may generally say that for good gener-
alization, the number N of training examples should be larger than the ratio of the
total number of free parameters in the network to the mean-square value of the
estimation error.

Curse of Dimensionality

Another interesting result that emerges from the bounds described in (4.92) is that when
the size of the hidden layer is optimized (i.e., the risk is minimized with respect
to N) by setting

then the risk is bounded by .A surprising aspect of this resultO(Cf2m0(logN�N)eav(N)

m1 M Cf a N

m0 log N
b 1�2

eav(N)

eav(N)

eav(N)

eav(N) � O a C2
f
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b + O am0m1

N
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eav(N)

Section 4.12 Approximations of Functions 169

is that in terms of the first-order behavior of the risk , the rate of convergence expressed
as a function of the training-sample size N is of order (1/N)1/2 (times a logarithmic factor).
In contrast, for traditional smooth functions (e.g., polynomials and trigonometric

eav(N)



functions), we have a different behavior. Let s denote a measure of smoothness, defined
as the number of continuous derivatives of a function of interest. Then, for traditional
smooth functions, we find that the minimax rate of convergence of the total risk eav(N)
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is of order (1/N)2s/(2s�mo).The dependence of this rate on the dimensionality of the input
space, m0, is responsible for the curse of dimensionality, which severely restricts the
practical application of these functions. The use of a multilayer perceptron for function
approximation appears to offer an advantage over the use of traditional smooth functions.
This advantage is, however, subject to the condition that the first absolute moment Cf

remains finite; this is a smoothness constraint.
The curse of dimensionality was introduced by Richard Bellman in his studies of

adaptive control processes (Bellman, 1961). For a geometric interpretation of this notion,
let x denote an m0-dimensional input vector and {(xi, di)}, i � 1, 2, ..., N, denote the
training sample. The sampling density is proportional to . Let a function f(x) rep-
resent a surface lying in the m0-dimensional input space that passes near the data
points {(xi, di)}N

i�1. Now, if the function f(x) is arbitrarily complex and (for the most
part) completely unknown, we need dense sample (data) points to learn it well.
Unfortunately, dense samples are hard to find in “high dimensions”—hence the curse
of dimensionality. In particular, there is an exponential growth in complexity as a
result of an increase in dimensionality, which, in turn, leads to the deterioration of
the space-filling properties for uniformly randomly distributed points in higher-
dimension spaces. The basic reason for the curse of dimensionality is as follows
(Friedman, 1995):

A function defined in high-dimensional space is likely to be much more complex than a
function defined in a lower-dimensional space, and those complications are harder to
discern.

Basically, there are only two ways of mitigating the curse-of-dimensionality problem:

1. Incorporate prior knowledge about the unknown function to be approximated.
This knowledge is provided over and above the training data. Naturally, the acqui-
sition of knowledge is problem dependent. In pattern classification, for example,
knowledge may be acquired from understanding the pertinent classes (categories)
of the input data.

2. Design the network so as to provide increasing smoothness of the unknown func-
tion with increasing input dimensionality.

Practical Considerations

The universal approximation theorem is important from a theoretical viewpoint because
it provides the necessary mathematical tool for the viability of feedforward networks
with a single hidden layer as a class of approximate solutions. Without such a theorem,
we could conceivably be searching for a solution that cannot exist. However, the theo-
rem is not constructive; that is, it does not actually specify how to determine a multilayer
perceptron with the stated approximation properties.

The universal approximation theorem assumes that the continuous function to be
approximated is given and that a hidden layer of unlimited size is available for the

N1�m0



approximation. Both of these assumptions are violated in most practical applications
of multilayer perceptrons.

The problem with multilayer perceptrons using a single hidden layer is that the neu-
rons therein tend to interact with each other globally. In complex situations, this inter-
action makes it difficult to improve the approximation at one point without worsening
it at some other point. On the other hand, with two hidden layers, the approximation
(curve-fitting) process becomes more manageable. In particular, we may proceed as fol-
lows (Funahashi, 1989; Chester, 1990):

1. Local features are extracted in the first hidden layer. Specifically, some neurons in
the first hidden layer are used to partition the input space into regions, and other
neurons in that layer learn the local features characterizing those regions.

2. Global features are extracted in the second hidden layer. Specifically, a neuron in
the second hidden layer combines the outputs of neurons in the first hidden layer
operating on a particular region of the input space and thereby learns the global
features for that region and outputs zero elsewhere.

Further justification for the use of two hidden layers is presented in Sontag (1992) in the
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context of inverse problems.

4.13 CROSS-VALIDATION

The essence of back-propagation learning is to encode an input–output mapping (repre-
sented by a set of labeled examples) into the synaptic weights and thresholds of a multilayer
perceptron. The hope is that the network becomes well trained so that it learns enough
about the past to generalize to the future. From such a perspective, the learning process
amounts to a choice of network parameterization for a given set of data. More specifically,
we may view the network selection problem as choosing, within a set of candidate model
structures (parameterizations), the “best” one according to a certain criterion.

In this context, a standard tool in statistics, known as cross-validation, provides an
appealing guiding principle9 (Stone, 1974, 1978). First the available data set is randomly
partitioned into a training sample and a test set. The training sample is further parti-
tioned into two disjoint subsets:

• an estimation subset, used to select the model;
• a validation subset, used to test or validate the model.

The motivation here is to validate the model on a data set different from the one used
for parameter estimation. In this way, we may use the training sample to assess the per-
formance of various candidate models and thereby choose the “best” one.There is, how-
ever, a distinct possibility that the model with the best-performing parameter values so
selected may end up overfitting the validation subset. To guard against this possibility,
the generalization performance of the selected model is measured on the test set, which
is different from the validation subset.

The use of cross-validation is appealing particularly when we have to design a
large neural network with good generalization as the goal. For example, we may use



cross-validation to determine the multilayer perceptron with the best number of hidden
neurons and to figure out when it is best to stop training, as described in the next two
subsections.

Model Selection

To expand on the idea of selecting a model in accordance with cross-validation, con-
sider a nested structure of Boolean function classes denoted by

(4.93)

In words, the kth function class encompasses a family of multilayer perceptrons with
similar architecture and weight vectors w drawn from a multidimensional weight space

. A member of this class, characterized by the function or hypothesis Fk � F(x, w),
, maps the input vector x into {0, 1}, where x is drawn from an input space with

some unknown probability P. Each multilayer perceptron in the structure described is
trained with the back-propagation algorithm, which takes care of training the parameters
of the multilayer perceptron.The model-selection problem is essentially that of choos-
ing the multilayer perceptron with the best value of w, the number of free parameters
(i.e., synaptic weights and biases). More precisely, given that the scalar desired response
for an input vector x is d � {0, 1}, we define the generalization error as the probability

We are given a training sample of labeled examples

The objective is to select the particular hypothesis F(x, w) that minimizes the general-
ization error �g(F), which results when it is given inputs from the test set.

In what follows, we assume that the structure described by Eq. (4.93) has the prop-
erty that, for any sample size N, we can always find a multilayer perceptron with a large
enough number of free parameters Wmax(N) such that the training sample can be fitted
adequately.This assumption is merely restating the universal approximation theorem of
Section 4.12. We refer to Wmax(N) as the fitting number. The significance of Wmax(N) is
that a reasonable model-selection procedure would choose a hypothesis F(x, w) that
requires W Wmax(N); otherwise, the network complexity would be increased.

Let a parameter r, lying in the range between 0 and 1, determine the split of the
training sample between the estimation subset and validation subset.With consist-tt
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ing of N examples, (1 � r)N examples are allotted to the estimation subset, and the
remaining rN examples are allotted to the validation subset. The estimation subset,
denoted by , is used to train a nested sequence of multilayer perceptrons, resulting in
the hypotheses of increasing complexity.With made up of (1 - r)N exam-
ples, we consider values of W smaller than or equal to the corresponding fitting number
Wmax((1 � r)N).

t¿f1, f2, ... , fn

t¿



The use of cross-validation results in the choice

(4.94)

where v corresponds to Wv � Wmax((1 - r)N), and is the classification error pro-
duced by hypothesis when it is tested on the validation subset , consisting of rN
examples.

The key issue is how to specify the parameter r that determines the split of the train-
ing sample between the estimation subset and validation subset . In a study described
in Kearns (1996) involving an analytic treatment of this issue and supported with detailed
computer simulations, several qualitative properties of the optimum r are identified:

• When the complexity of the target function, which defines the desired response d
in terms of the input vector x, is small compared with the sample size N, the per-
formance of cross-validation is relatively insensitive to the choice of r.

• As the target function becomes more complex relative to the sample size N, the
choice of optimum r has a more pronounced effect on cross-validation perfor-
mance, and the value of the target function itself decreases.

• A single fixed value of r works nearly optimally for a wide range of target-function
complexity.

On the basis of the results reported in Kearns (1996), a fixed value of r equal to 0.2
appears to be a sensible choice, which means that 80 percent of the training sample 
is assigned to the estimation subset and the remaining 20 percent is assigned to the
validation subset.

Early-Stopping Method of Training

Ordinarily, a multilayer perceptron trained with the back-propagation algorithm learns
in stages, moving from the realization of fairly simple to more complex mapping functions
as the training session progresses.This process is exemplified by the fact that in a typical
situation, the mean-square error decreases with an increasing number of epochs used for
training: It starts off at a large value, decreases rapidly, and then continues to decrease
slowly as the network makes its way to a local minimum on the error surface.With good
generalization as the goal, it is very difficult to figure out when it is best to stop training
if we were to look at the learning curve for training all by itself. In particular, in light of
what was said in Section 4.11 on generalization, it is possible for the network to end up
overfitting the training data if the training session is not stopped at the right point.

We may identify the onset of overfitting through the use of cross-validation, for
which the training data are split into an estimation subset and a validation subset. The
estimation subset of examples is used to train the network in the usual way, except for a
minor modification:The training session is stopped periodically (i.e., every so many epochs),
and the network is tested on the validation subset after each period of training. More
specifically, the periodic “estimation-followed-by-validation process” proceeds as follows:

• After a period of estimation (training)—every five epochs, for example—the
synaptic weights and bias levels of the multilayer perceptron are all fixed, and the

t
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network is operated in its forward mode. The validation error is thus measured
for each example in the validation subset.

• When the validation phase is completed, the estimation (training) is resumed for
another period, and the process is repeated.

This procedure is referred to as the early-stopping method of training, which is simple
to understand and therefore widely used in practice.

Figure 4.17 shows conceptualized forms of two learning curves, one pertaining to
measurements on the estimation subset and the other pertaining to the validation subset.
Typically, the model does not do as well on the validation subset as it does on the estima-
tion subset, on which its design was based.The estimation learning curve decreases monot-
onically for an increasing number of epochs in the usual manner. In contrast, the validation
learning curve decreases monotonically to a minimum and then starts to increase as the
training continues.When we look at the estimation learning curve, it may appear that we
could do better by going beyond the minimum point on the validation learning curve. In
reality, however, what the network is learning beyond this point is essentially noise con-
tained in the training data. This heuristic suggests that the minimum point on the valida-
tion learning curve be used as a sensible criterion for stopping the training session.

However, a word of caution is in order here. In reality, the validation-sample error
does not evolve over the number of epochs used for training as smoothly as the ideal-
ized curve shown in Fig. 4.17. Rather, the validation-sample error may exhibit few local
minima of its own before it starts to increase with an increasing number of epochs. In
such situations, a stopping criterion must be selected in some systematic manner. An
empirical investigation on multilayer perceptrons carried out by Prechelt (1998) demon-
strates experimentally that there is, in fact, a tradeoff between training time and gener-
alization performance. Based on experimental results obtained therein on 1,296 training
sessions, 12 different problems, and 24 different network architectures, it is concluded
that, in the presence of two or more local minima, the selection of a “slower” stopping
criterion (i.e., a criterion that stops later than other criteria) permits the attainment of
a small improvement in generalization performance (typically, about 4 percent, on aver-
age) at the cost of a much longer training time (about a factor of four, on average).
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Variants of Cross-Validation

The approach to cross-validation just described is also referred to as the holdout method.
There are other variants of cross-validation that find their own uses in practice, partic-
ularly when there is a scarcity of labeled examples. In such a situation, we may use
multifold cross-validation by dividing the available set of N examples into K subsets,
where K � 1; this procedure assumes that K is divisible into N. The model is trained on
all the subsets except for one, and the validation error is measured by testing it on the
subset that is left out. This procedure is repeated for a total of K trials, each time using
a different subset for validation, as illustrated in Fig. 4.18 for K � 4. The performance
of the model is assessed by averaging the squared error under validation over all the trials
of the experiment.There is a disadvantage to multifold cross-validation: It may require
an excessive amount of computation, since the model has to be trained K times, where
1  K � N.

When the available number of labeled examples, N, is severely limited, we may use
the extreme form of multifold cross-validation known as the leave-one-out method. In
this case, N - 1 examples are used to train the model, and the model is validated by test-
ing it on the example that is left out. The experiment is repeated for a total of N times,
each time leaving out a different example for validation. The squared error under vali-
dation is then averaged over the N trials of the experiment.

4.14 COMPLEXITY REGULARIZATION AND NETWORK PRUNING

In designing a multilayer perceptron by whatever method, we are in effect building a non-
linear model of the physical phenomenon responsible for the generation of the
input–output examples used to train the network. Insofar as the network design is sta-
tistical in nature, we need an appropriate tradeoff between reliability of the training
data and goodness of the model (i.e., a method for solving the bias–variance dilemma
discussed in Chapter 2). In the context of back-propagation learning, or any other super-
vised learning procedure for that matter, we may realize this tradeoff by minimizing the
total risk, expressed as a function of the parameter vector w, as follows:

(4.95)

The first term, , is the standard performance metric, which depends on both the
network (model) and the input data. In back-propagation learning, it is typically defined

eav(w)

R(w) = eav(w) + 
ec(w)
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as a mean-square error whose evaluation extends over the output neurons of the net-
work and is carried out for all the training examples on an epoch-by-epoch basis, see
Eq. (4.5). The second term, , is the complexity penalty, where the notion of com-
plexity is measured in terms of the network (weights) alone; its inclusion imposes on the
solution prior knowledge that we may have on the models being considered. For the
present discussion, it suffices to think of � as a regularization parameter, which represents
the relative importance of the complexity-penalty term with respect to the performance-
metric term. When � is zero, the back-propagation learning process is unconstrained,
with the network being completely determined from the training examples. When � is
made infinitely large, on the other hand, the implication is that the constraint imposed
by the complexity penalty is by itself sufficient to specify the network, which is another
way of saying that the training examples are unreliable. In practical applications of
complexity regularization, the regularization parameter � is assigned a value some-
where between these two limiting cases. The subject of regularization theory is dis-
cussed in great detail in Chapter 7.

Weight-Decay Procedure

In a simplified, yet effective, form of complex regularization called the weight-decay
procedure (Hinton, 1989), the complexity penalty term is defined as the squared norm
of the weight vector w (i.e., all the free parameters) in the network, as shown by

(4.96)

where the set refers to all the synaptic weights in the network.This procedure oper-
ates by forcing some of the synaptic weights in the network to take values close to zero,
while permitting other weights to retain their relatively large values. Accordingly, the
weights of the network are grouped roughly into two categories:

(i) weights that have a significant influence on the network’s performance;
(ii) weights that have practically little or no influence on the network’s performance.

The weights in the latter category are referred to as excess weights. In the absence of com-
plexity regularization, these weights result in poor generalization by virtue of their high
likelihood of taking on completely arbitrary values or causing the network to overfit
the data in order to produce a slight reduction in the training error (Hush and Horne,
1993). The use of complexity regularization encourages the excess weights to assume
values close to zero and thereby improve generalization.

Hessian-Based Network Pruning: Optimal Brain Surgeon

The basic idea of an analytic approach to network pruning is to use information on
second-order derivatives of the error surface in order to make a trade-off between net-
work complexity and training-error performance. In particular, a local model of the
error surface is constructed for analytically predicting the effect of perturbations in
synaptic weights. The starting point in the construction of such a model is the local
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approximation of the cost function by using a Taylor series about the operating
point, described as

(4.97)

where !w is a perturbation applied to the operating point w and g(w) is the gradient vec-
tor evaluated at w. The Hessian is also evaluated at the point w, and therefore, to be
correct, we should denote it by H(w). We have not done so in Eq. (4.97) merely to sim-
plify the notation.

The requirement is to identify a set of parameters whose deletion from the multi-
layer perceptron will cause the least increase in the value of the cost function .To solve
this problem in practical terms, we make the following approximations:

1. Extremal Approximation. We assume that parameters are deleted from the net-
work only after the training process has converged (i.e., the network is fully trained).The
implication of this assumption is that the parameters have a set of values correspond-
ing to a local minimum or global minimum of the error surface. In such a case, the gra-
dient vector g may be set equal to zero, and the term gT!w on the right-hand side of
Eq. (4.97) may therefore be ignored; otherwise, the saliency measures (defined later) will
be invalid for the problem at hand.

2. Quadratic Approximation. We assume that the error surface around a local
minimum or global minimum is “nearly quadratic.” Hence, the higher-order terms in
Eq. (4.97) may also be neglected.

Under these two assumptions, Eq. (4.97) is simplified as

(4.98)

Equation (4.98) provides the basis for the pruning procedure called optimal brain sur-
geon (OBS), which is due to Hassibi and Stork (1993).

The goal of OBS is to set one of the synaptic weights to zero in order to minimize
the incremental increase in given in Eq. (4.98). Let wi(n) denote this particular synap-
tic weight. The elimination of this weight is equivalent to the condition

(4.99)

where 1i is the unit vector whose elements are all zero, except for the ith element, which
is equal to unity. We may now restate the goal of OBS as follows:

Minimize the quadratic form !wTH!w with respect to the incremental change in1
2

1i
T
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2
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the weight vector, !w, subject to the constraint that is zero, and then minimize the
result with respect to the index i.

There are two levels of minimization going on here. One minimization is over the
synaptic-weight vectors that remain after the ith weight vector is set equal to zero. The
second minimization is over which particular vector is pruned.

1T
i ¢w + wi



To solve this constrained-optimization problem, we first construct the Lagrangian

(4.100)

where � is the Lagrange multiplier.Then, taking the derivative of the Lagrangian S with
respect to !w, applying the constraint of Eq. (4.99), and using matrix inversion, we find
that the optimum change in the weight vector w is given by

(4.101)

and the corresponding optimum value of the Lagrangian S for element wi is

(4.102)

where H�1 is the inverse of the Hessian H, and [H�1]i, i is the ii-th element of this inverse
matrix. The Lagrangian Si optimized with respect to !w, subject to the constraint that
the ith synaptic weight wi be eliminated, is called the saliency of wt. In effect, the saliency
Si represents the increase in the mean-square error (performance measure) that results
from the deletion of wi. Note that the saliency Si, is proportional to . Thus, small
weights have a small effect on the mean-square error. However, from Eq. (4.102), we see
that the saliency Si, is also inversely proportional to the diagonal elements of the inverse
Hessian. Thus, if [H�1]i, i is small, then even small weights may have a substantial effect
on the mean-square error.

In the OBS procedure, the weight corresponding to the smallest saliency is the
one selected for deletion. Moreover, the corresponding optimal changes in the remain-
der of the weights are given in Eq. (4.101), which show that they should be updated
along the direction of the i-th column of the inverse of the Hessian.

According to Hassibi and coworkers commenting on some benchmark problems, the
OBS procedure resulted in smaller networks than those obtained using the weight-decay
procedure. It is also reported that as a result of applying the OBS procedure to the NETtalk
multilayer perceptron, involving a single hidden layer and well over 18,000 weights, the
network was pruned to a mere 1,560 weights, a dramatic reduction in the size of the net-
work. NETtalk, due to Sejnowski and Rosenberg (1987), is described in Section 4.18.

Computing the inverse Hessian. The inverse Hessian H-1 is fundamental to the formu-
lation of the OBS procedure. When the number of free parameters, W, in the network
is large, the problem of computing H-1 may be intractable. In what follows, we describe
a manageable procedure for computing H-1, assuming that the multilayer perceptron is
fully trained to a local minimum on the error surface (Hassibi and Stork, 1993).

To simplify the presentation, suppose that the multilayer perceptron has a single
output neuron. Then, for a given training sample, we may redefine the cost function of
Eq. (4.5) as
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where o(n) is the actual output of the network on the presentation of the nth example,
d(n) is the corresponding desired response, and N is the total number of examples in the
training sample. The output o(n) may itself be expressed as

where F is the input–output mapping function realized by the multilayer perceptron, x
is the input vector, and w is the synaptic-weight vector of the network. The first deriva-
tive of eav with respect to w is therefore

(4.103)

and the second derivative of eav with respect to w or the Hessian is

(4.104)

where we have emphasized the dependence of the Hessian on the size of the training
sample, N.

Under the assumption that the network is fully trained—that is, the cost function
eav has been adjusted to a local minimum on the error surface—it is reasonable to say
that o(n) is close to d(n). Under this condition, we may ignore the second term and
approximate Eq. (4.104) as

(4.105)

To simplify the notation, define the W-by-1 vector

(4.106)

which may be computed using the procedure described in Section 4.8. We may then
rewrite Eq. (4.105) in the form of a recursion as follows:

(4.107)

This recursion is in the right form for application of the so-called matrix inversion lemma,
also known as Woodbury’s equality.

Let A and B denote two positive-definite matrices related by
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where C and D are two other matrices. According to the matrix inversion lemma, the
inverse of matrix A is defined by

For the problem described in Eq. (4.107) we have

Application of the matrix inversion lemma therefore yields the desired formula for
recursive computation of the inverse Hessian:

(4.108)

Note that the denominator in Eq. (4.108) is a scalar; it is therefore straightforward to cal-
culate its reciprocal. Thus, given the past value of the inverse Hessian, H-1(n – 1), we
may compute its updated value H-l(n) on the presentation of the nth example, repre-
sented by the vector �(n). This recursive computation is continued until the entire set of
N examples has been accounted for.To initialize the algorithm, we need to make H-1(0)
large, since it is being constantly reduced according to Eq. (4.108). This requirement is
satisfied by setting

where � is a small positive number and I is the identity matrix. This form of initializa-
tion assures that H-l(n) is always positive definite.The effect of � becomes progressively
smaller as more and more examples are presented to the network.

A summary of the optimal-brain-surgeon algorithm is presented in Table 4.1.

4.15 VIRTUES AND LIMITATIONS OF BACK-PROPAGATION LEARNING

First and foremost, it should be understood that the back-propagation algorithm is not
an algorithm intended for the optimum design of a multilayer perceptron. Rather, the
correct way to describe it is to say:

The back-propagation algorithm is a computationally efficient technique for computing the
gradients (i.e., first-order derivatives) of the cost function e(w), expressed as a function of
the adjustable parameters (synaptic weights and bias terms) that characterize the multilayer
perceptron.

The computational power of the algorithm is derived from two distinct properties:

1. The back-propagation algorithm is simple to compute locally.
2. It performs stochastic gradient descent in weight space, when the algorithm is

implemented in its on-line (sequential) mode of learning.

H-1(0) = �-1I

H-1(n) = H-1(n - 1) -
H-1(n - 1)�(n)�T(n)H-1(n - 1)

1 + �T(n)H-1(n - 1)�(n)

 D = 1

 C = �(n)

 B-1 = H(n - 1)

 A = H(n)

A-1 = B - BC(D + CTBC)-1CTB
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Connectionism

The back-propagation algorithm is an example of a connectionist paradigm that relies on
local computations to discover the information-processing capabilities of neural networks.
This form of computational restriction is referred to as the locality constraint, in the sense
that the computation performed by each neuron in the network is influenced solely by those
other neurons that are in physical contact with it. The use of local computations in the
design of (artificial) neural networks is usually advocated for three principal reasons:

1. Neural networks that perform local computations are often held up as metaphors
for biological neural networks.

2. The use of local computations permits a graceful degradation in performance
caused by hardware errors and therefore provides the basis for a fault-tolerant net-
work design.

3. Local computations favor the use of parallel architectures as an efficient method
for the implementation of neural networks.

Replicator (Identity) Mapping

The hidden neurons of a multilayer perceptron trained with the back-propagation
algorithm play a critical role as feature detectors. A novel way in which this impor-
tant property of the multilayer perceptron can be exploited is in its use as a replicator
or identity map (Rumelhart et al., 1986b; Cottrel et al., 1987). Figure 4.19 illustrates
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TABLE 4.1 Summary of the Optimal-Brain-Surgeon Algorithm

1. Train the given multilayer perceptron to minimum mean-square error.

2. Use the procedure described in Section 4.8 to compute the vector

where F(w, x(n)) is the input–output mapping realized by the multilayer perceptron with an overall
weight vector w, and x(n) is the input vector.

3. Use the recursion in Eq. (4.108) to compute the inverse Hessian H�1.

4. Find the i that corresponds to the smallest saliency

where is the (i, i)th element of H-1. If the saliency Si is much smaller than the mean-square error
eav, then delete the synaptic weight wi and proceed to step 5. Otherwise, go to step 6.

5. Update all the synaptic weights in the network by applying the adjustment

Go to step 2.

6. Stop the computation when no more weights can be deleted from the network without a large increase
in the mean-square error. (It may be desirable to retrain the network at this point).

¢w = - 
wi

[H-1]i, i

 H-11i

[H- 1]i, i

Si =
wi

2

2[H-1]i, i

�(n) =
1

2N
 
0F(w, x(n))

0w



how this can be accomplished for the case of a multilayer perceptron using a single
hidden layer. The network layout satisfies the following structural requirements, as
illustrated in Fig. 4.19a:

• The input and output layers have the same size, m.
• The size of the hidden layer, M, is smaller than m.
• The network is fully connected.

A given pattern x is simultaneously applied to the input layer as the stimulus and to the
output layer as the desired response. The actual response of the output layer, , isx̂
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FIGURE 4.19 (a) Replicator network (identity map) with a single hidden layer used as an
encoder. (b) Block diagram for the supervised training of the replicator network. (c) Part of
the replicator network used as a decoder.



Section 4.15 Virtues and Limitations of Back-Propagation Learning 183

intended to be an “estimate” of x. The network is trained using the back-propagation
algorithm in the usual way, with the estimation error vector ( ) treated as the error
signal, as illustrated in Fig. 4.19b. The training is performed in an unsupervised manner
(i.e., without the need for a teacher). By virtue of the special structure built into the
design of the multilayer perceptron, the network is constrained to perform identity map-
ping through its hidden layer. An encoded version of the input pattern, denoted by s, is
produced at the output of the hidden layer, as indicated in Fig. 4.19a. In effect, the fully
trained multilayer perceptron performs the role of an “encoder.”To reconstruct an esti-
mate of the original input pattern x (i.e., to perform decoding), we apply the encoded
signal to the hidden layer of the replicator network, as illustrated in Fig. 4.19c. In effect,
this latter network performs the role of a “decoder.”The smaller we make the size M of the
hidden layer compared with the size m of the input–output layer, the more effective the
configuration of Fig. 4.19a will be as a data-compression system.10

Function Approximation

A multilayer perceptron trained with the back-propagation algorithm manifests itself as
a nested sigmoidal structure, written for the case of a single output in the compact form

(4.109)

where (·) is a sigmoid activation function; wok is the synaptic weight from neuron k in the
last hidden layer to the single output neuron o, and so on for the other synaptic weights;
and xi is the ith element of the input vector x. The weight vector w denotes the entire set
of synaptic weights ordered by layer, then neurons in a layer, and then synapses in a
neuron. The scheme of nested nonlinear functions described in Eq. (4.109) is unusual in
classical approximation theory. It is a universal approximator, as discussed in Section 4.12.

Computational Efficiency

The computational complexity of an algorithm is usually measured in terms of the num-
ber of multiplications, additions, and storage requirement involved in its implementation.
A learning algorithm is said to be computationally efficient when its computational com-
plexity is polynomial in the number of adjustable parameters that are to be updated
from one iteration to the next. On this basis, it can be said that the back-propagation algo-
rithm is computationally efficient, as stated in the summarizing description at the begin-
ning of this section. Specifically, in using the algorithm to train a multilayer perceptron
containing a total of W synaptic weights (including biases), its computational complex-
ity is linear in W. This important property of the back-propagation algorithm can be
readily verified by examining the computations involved in performing the forward and
backward passes summarized in Section 4.4. In the forward pass, the only computations
involving the synaptic weights are those that pertain to the induced local fields of the var-
ious neurons in the network. Here, we see from Eq. (4.44) that these computations are
all linear in the synaptic weights of the network. In the backward pass, the only compu-
tations involving the synaptic weights are those that pertain to (1) the local gradients of
the hidden neurons, and (2) the updating of the synaptic weights themselves, as shown in
Eqs. (4.46) and (4.47), respectively. Here again, we also see that these computations are
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wok� aa
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all linear in the synaptic weights of the network.The conclusion is therefore that the com-
putational complexity of the back-propagation algorithm is linear in W; that is, it is O(W).

Sensitivity Analysis

Another computational benefit gained from the use of back-propagation learning is the
efficient manner in which we can carry out a sensitivity analysis of the input–output
mapping realized by the algorithm.The sensitivity of an input–output mapping function
F with respect to a parameter of the function, denoted by #, is defined by

(4.110)

Consider then a multilayer perceptron trained with the back-propagation algorithm. Let
the function F(w) be the input–output mapping realized by this network; w denotes the
vector of all synaptic weights (including biases) contained in the network. In Section 4.8,
we showed that the partial derivatives of the function F(w) with respect to all the ele-
ments of the weight vector w can be computed efficiently. In particular, we see that the
complexity involved in computing each of these partial derivatives is linear in W, the total
number of weights contained in the network.This linearity holds regardless of where the
synaptic weight in question appears in the chain of computations.

Robustness

In Chapter 3, we pointed out that the LMS algorithm is robust in the sense that distur-
bances with small energy can give rise only to small estimation errors. If the underlying
observation model is linear, the LMS algorithm is an -optimal filter (Hassibi et al.,
1993, 1996).What this means is that the LMS algorithm minimizes the maximum energy
gain from the disturbances to the estimation errors.

If, on the other hand, the underlying observation model is nonlinear, Hassibi and
Kailath (1995) have shown that the back-propagation algorithm is a locally -optimal
filter.The term “local” means that the initial value of the weight vector used in the back-
propagation algorithm is sufficiently close to the optimum value w* of the weight vec-
tor to ensure that the algorithm does not get trapped in a poor local minimum. In
conceptual terms, it is satisfying to see that the LMS and back-propagation algorithms
belong to the same class of -optimal filters.

Convergence

The back-propagation algorithm uses an “instantaneous estimate” for the gradient of the
error surface in weight space. The algorithm is therefore stochastic in nature; that is, it
has a tendency to zigzag its way about the true direction to a minimum on the error sur-
face. Indeed, back-propagation learning is an application of a statistical method known
as stochastic approximation that was originally proposed by Robbins and Monro (1951).
Consequently, it tends to converge slowly.We may identify two fundamental causes for
this property (Jacobs, 1988):

1. The error surface is fairly flat along a weight dimension, which means that the
derivative of the error surface with respect to that weight is small in magnitude. In such

Hq

Hq

Hq

SF
# =

0F�F

0#�#
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a situation, the adjustment applied to the weight is small, and consequently many itera-
tions of the algorithm may be required to produce a significant reduction in the error
performance of the network. Alternatively, the error surface is highly curved along a
weight dimension, in which case the derivative of the error surface with respect to that
weight is large in magnitude. In this second situation, the adjustment applied to the weight
is large, which may cause the algorithm to overshoot the minimum of the error surface.

2. The direction of the negative gradient vector (i.e., the negative derivative of
the cost function with respect to the vector of weights) may point away from the mini-
mum of the error surface: hence, the adjustments applied to the weights may induce the
algorithm to move in the wrong direction.

To avoid the slow rate of convergence of the back-propagation algorithm used to
train a multilayer perceptron, we may opt for the optimally annealed on-line learning
algorithm described in Section 4.10.

Local Minima

Another peculiarity of the error surface that affects the performance of the back-
propagation algorithm is the presence of local minima (i.e., isolated valleys) in addition
to global minima; in general, it is difficult to determine the numbers of local and global
minima. Since back-propagation learning is basically a hill-climbing technique, it runs the
risk of being trapped in a local minimum where every small change in synaptic weights
increases the cost function. But somewhere else in the weight space, there exists another
set of synaptic weights for which the cost function is smaller than the local minimum in
which the network is stuck. It is clearly undesirable to have the learning process termi-
nate at a local minimum, especially if it is located far above a global minimum.

Scaling

In principle, neural networks such as multilayer perceptrons trained with the back-
propagation algorithm have the potential to be universal computing machines. However,
for that potential to be fully realized, we have to overcome the scaling problem, which
addresses the issue of how well the network behaves (e.g., as measured by the time
required for training or the best generalization performance attainable) as the compu-
tational task increases in size and complexity. Among the many possible ways of mea-
suring the size or complexity of a computational task, the predicate order defined by
Minsky and Papert (1969, 1988) provides the most useful and important measure.

To explain what we mean by a predicate, let %(X) denote a function that can have
only two values. Ordinarily, we think of the two values of %(X) as 0 and 1. But by tak-
ing the values to be FALSE or TRUE, we may think of %(X) as a predicate—that is, a
variable statement whose falsity or truth depends on the choice of argument X. For
example, we may write

Using the idea of a predicate,Tesauro and Janssens (1988) performed an empirical
study involving the use of a multilayer perceptron trained with the back-propagation

%CIRCLE(X) = e1 if the figure X is a circle
0 if the figure X is not a circle
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algorithm to learn to compute the parity function.The parity function is a Boolean pred-
icate defined by

and whose order is equal to the number of inputs.The experiments performed by Tesauro
and Janssens appear to show that the time required for the network to learn to compute
the parity function scales exponentially with the number of inputs (i.e., the predicate
order of the computation), and that projections of the use of the back-propagation algo-
rithm to learn arbitrarily complicated functions may be overly optimistic.

It is generally agreed that it is inadvisable for a multilayer perceptron to be fully
connected. In this context, we may therefore raise the following question: Given that a
multilayer perceptron should not be fully connected, how should the synaptic connec-
tions of the network be allocated? This question is of no major concern in the case of
small-scale applications, but it is certainly crucial to the successful application of back-
propagation learning for solving large-scale, real-world problems.

One effective method of alleviating the scaling problem is to develop insight into
the problem at hand (possibly through neurobiological analogy) and use it to put inge-
nuity into the architectural design of the multilayer perceptron. Specifically, the net-
work architecture and the constraints imposed on synaptic weights of the network should
be designed so as to incorporate prior information about the task into the makeup of the
network.This design strategy is illustrated in Section 4.17 for the optical character recog-
nition problem.

4.16 SUPERVISED LEARNING VIEWED AS AN OPTIMIZATION PROBLEM

In this section, we take a viewpoint on supervised learning that is quite different from
that pursued in previous sections of the chapter. Specifically, we view the supervised
training of a multilayer perceptron as a problem in numerical optimization. In this con-
text, we first point out that the error surface of a multilayer perceptron with supervised
learning is a nonlinear function of a weight vector w; in the case of a multilayer per-
ceptron, w represents the synaptic weight of the network arranged in some orderly fash-
ion. Let denote the cost function, averaged over the training sample. Using the
Taylor series, we may expand about the current operating point on the error sur-
face as in Eq. (4.97), reproduced here in the form:

(4.111)

where g(n) is the local gradient vector, defined by

(4.112)g(n) =
0eav(w)

0w
†
w = w(n)

 + (third- and higher-order terms)

eav(w(n) + ¢w(n)) = eav(w(n)) + gT(n)¢w(n) +
1
2

¢wT(n)H(n)¢w(n)

eav(w)
eav(w)

%PARITY(X) = e1 if �X� is an odd number
0 otherwise
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The matrix H(n) is the local Hessian representing “curvature” of the error performance
surface, defined by

(4.113)

The use of an ensemble-averaged cost function presumes a batch mode of learning.
In the steepest-descent method, exemplified by the back-propagation algorithm,

the adjustment !w(n) applied to the synaptic weight vector w(n) is defined by

(4.114)

where � is a fixed learning-rate parameter. In effect, the steepest-descent method oper-
ates on the basis of a liner approximation of the cost function in the local neighborhood
of the operating point w(n). In so doing, it relies on the gradient vector g(n) as the only
source of local first-order information about the error surface.This restriction has a ben-
eficial effect: simplicity of implementation. Unfortunately, it also has a detrimental effect:
a slow rate of convergence, which can be excruciating, particularly in the case of large-
scale problems. The inclusion of the momentum term in the update equation for the
synaptic weight vector is a crude attempt at using second-order information about the
error surface, which is of some help. However, its use makes the training process more
delicate to manage by adding one more item to the list of parameters that have to be
“tuned” by the designer.

In order to produce a significant improvement in the convergence performance of
a multilayer perceptron (compared with back-propagation learning), we have to use
higher-order information in the training process. We may do so by invoking a quadratic
approximation of the error surface around the current point w(n). We then find from
Eq. (4.111) that the optimum value of the adjustment !w(n) applied to the synaptic
weight vector w(n) is given by

(4.115)

where H-1(n) is the inverse of the Hessian H(n), assuming that it exists. Equation (4.115)
is the essence of Newton’s method. If the cost function is quadratic (i.e., the
third- and higher-order terms in Eq. (4.109) are zero), Newton’s method converges to
the optimum solution in one iteration. However, the practical application of Newton’s
method to the supervised training of a multilayer perceptron is handicapped by three
factors:

(i) Newton’s method requires calculation of the inverse Hessian H-1(n), which can
be computationally expensive.

(ii) For H-1(n) to be computable, H(n) has to be nonsingular. In the case where H(n)
is positive definite, the error surface around the current point w(n) is describable
by a “convex bowl.” Unfortunately, there is no guarantee that the Hessian of the
error surface of a multilayer perceptron will always fit this description. Moreover,
there is the potential problem of the Hessian being rank deficient (i.e., not all the

eav(w)

¢w*(n) = H-1(n)g(n)

¢w(n) = -�g(n)

eav(w)

H(n) =
02eav(w)

0w2
†
w = w(n)
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columns of H are linearly independent), which results from the intrinsically 
ill-conditioned nature of supervised-learning problems (Saarinen et al., 1992); this
factor only makes the computational task more difficult.

(iii) When the cost function is nonquadratic, there is no guarantee for conver-
gence of Newton’s method, which makes it unsuitable for the training of a multi-
layer perceptron.

To overcome some of these difficulties, we may use a quasi-Newton method, which
requires only an estimate of the gradient vector g.This modification of Newton’s method
maintains a positive-definite estimate of the inverse matrix H-1 directly without matrix
inversion. By using such an estimate, a quasi-Newton method is assured of going down-
hill on the error surface. However, we still have a computational complexity that is
O(W2), where W is the size of weight vector w. Quasi-Newton methods are therefore
computationally impractical, except for in the training of very small-scale neural net-
works. A description of quasi-Newton methods is presented later in the section.

Another class of second-order optimization methods includes the conjugate-
gradient method, which may be regarded as being somewhat intermediate between the
method of steepest descent and Newton’s method. Use of the conjugate-gradient method
is motivated by the desire to accelerate the typically slow rate of convergence experi-
enced with the method of steepest descent, while avoiding the computational require-
ments associated with the evaluation, storage, and inversion of the Hessian in Newton’s
method.

Conjugate-Gradient Method11

The conjugate-gradient method belongs to a class of second-order optimization meth-
ods known collectively as conjugate-direction methods. We begin the discussion of these
methods by considering the minimization of the quadratic function

(4.116)

where x is a W-by-1 parameter vector; A is a W-by-W symmetric, positive-definite matrix;
b is a W-by-1 vector; and c is a scalar. Minimization of the quadratic function f(x) is
achieved by assigning to x the unique value

(4.117)

Thus, minimizing f(x) and solving the linear system of equations Ax* � b are equivalent
problems.

Given the matrix A, we say that a set of nonzero vectors s(0), s(1), s(W - 1) is
A-conjugate (i.e., noninterfering with each other in the context of matrix A) if the
following condition is satisfied:

(4.118)

If A is equal to the identity matrix, conjugacy is equivalent to the usual notion of
orthogonality.

sT(n)As(j) = 0  for all n and j such that n Z j

...,

x* = A-1b

f(x) =
1
2

xTAx - bTx + c

eav(w)
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EXAMPLE 1 Interpretation of A-conjugate vectors

For an interpretation of A-conjugate vectors, consider the situation described in Fig. 4.20a, per-
taining to a two-dimensional problem.The elliptic locus shown in this figure corresponds to a plot
of Eq. (4.116) for

at some constant value assigned to the quadratic function f(x). Figure 4.20a also includes a pair
of direction vectors that are conjugate with respect to the matrix A. Suppose that we define a
new parameter vector v related to x by the transformation

where A1/2 is the square root of A. Then the elliptic locus of Fig. 4.20a is transformed into a cir-
cular locus, as shown in Fig. 4.20b. Correspondingly, the pair of A-conjugate direction vectors
in Fig. 4.20a is transformed into a pair of orthogonal direction vectors in Fig. 4.20b. ■

An important property of A-conjugate vectors is that they are linearly independent.
We prove this property by contradiction. Let one of these vectors—say, s(0)—be
expressed as a linear combination of the remaining W - 1 vectors as follows:

Multiplying by A and then taking the inner product of As(0) with s(0) yields

However, it is impossible for the quadratic form sT(0)As(0) to be zero, for two reasons:
The matrix A is positive definite by assumption, and the vector s(0) is nonzero by def-
inition. It follows therefore that the A-conjugate vectors s(0), s(1), s(W - 1) cannot
be linearly dependent; that is, they must be linearly independent.

...,

sT(0)As(0) = a
W - 1

j = 1
�js

T(0)As(j) = 0

s(0) = a
W - 1

j = 1
�js(j)

v = A1�2x

x = [x0, x1]
T

x1

0

(a)

x0

v1

0

(b)

v0

FIGURE 4.20 Interpretation
of A-conjugate vectors.
(a) Elliptic locus in two-
dimensional weight space.
(b) Transformation of the
elliptic locus into a circular
locus.



For a given set of A-conjugate vectors s(0), s(1), s(W - 1), the corresponding
conjugate-direction method for unconstrained minimization of the quadratic error func-
tion f(x) is defined by

(4.119)

where x(0) is an arbitrary starting vector and �(n) is a scalar defined by

(4.120)

(Fletcher, 1987; Bertsekas, 1995). The procedure of choosing � so as to minimize the
function f(x(n) � �s(n)) for some fixed n is referred to as a line search, which represents
a one-dimensional minimization problem.

In light of Eqs. (4.118), (4.119) and (4.120), we now offer some observations:

1. Since the A-conjugate vectors s(0), s(1), s(W - 1) are linearly independent,
they form a basis that spans the vector space of w.

2. The update equation (4.119) and the line minimization of Eq. (4.120) lead to the
same formula for the learning-rate parameter, namely,

(4.121)

where e(n) is the error vector defined by

(4.122)

3. Starting from an arbitrary point x(0), the conjugate-direction method is guaranteed
to find the optimum solution x* of the quadratic equation f(x) � 0 in at most W
iterations.

The principal property of the conjugate-direction method is described in the
following statement (Fletcher, 1987; Bertsekas, 1995):

At successive iterations, the conjugate-direction method minimizes the quadratic function f(x)
over a progressively expanding linear vector space that eventually includes the global mini-
mum of f(x).

In particular, for each iteration n, the iterate x(n � 1) minimizes the function f(x) over
a linear vector space that passes through some arbitrary point x(0) and is spanned
by the A-conjugate vectors s(0), s(1), s(n), as shown by

(4.123)

where the space is defined by

(4.124)dn = ex(n) � x(n) = x(0) + a
n

j = 0
�(j)s(j) f

dn

x(n + 1) = arg min
x�dn

 f(x)

...,
dn

e(n) = x(n) - x*

�(n) = -
sT(n)Ae(n)

sT(n)As(n)
,  n = 0, 1, ..., W - 1

...,

f(x(n) + �(n)s(n)) = min
�

 f(x(n) + �s(n))

x(n + 1) = x(n) + �(n)s(n),  n = 0, 1, ..., W - 1

...,
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For the conjugate-direction method to work, we require the availability of a set
of A-conjugate vectors s(0), s(1), s(W - 1). In a special form of this method known
as the scaled conjugate-gradient method,12 the successive direction vectors are generated
as A-conjugate versions of the successive gradient vectors of the quadratic function f(x)
as the method progresses—hence the name of the method. Thus, except for n � 0, the
set of direction vectors {s(n)} is not specified beforehand, but rather it is determined in
a sequential manner at successive steps of the method.

First, we define the residual as the steepest-descent direction:

(4.125)

Then, to proceed, we use a linear combination of r(n) and s(n - 1), as shown by

(4.126)

where �(n) is a scaling factor to be determined. Multiplying this equation by A, taking
the inner product of the resulting expression with s(n - 1), invoking the A-conjugate prop-
erty of the direction vectors, and then solving the resulting expression for �(n), we get

(4.127)

Using Eqs. (4.126) and (4.127), we find that the vectors s(0), s(1), s(W - 1) so gen-
erated are indeed A-conjugate.

Generation of the direction vectors in accordance with the recursive equation
(4.126) depends on the coefficient �(n).The formula of Eq. (4.127) for evaluating �(n),
as it presently stands, requires knowledge of matrix A. For computational reasons, it
would be desirable to evaluate �(n) without explicit knowledge of A.This evaluation can
be achieved by using one of two formulas (Fletcher, 1987):

1. the Polak–Ribiè̀re formula, for which �(n) is defined by

(4.128)

2. the Fletcher–Reeves formula, for which �(n) is defined by

(4.129)

To use the conjugate-gradient method to attack the unconstrained minimization
of the cost function pertaining to the unsupervised training of multilayer per-
ceptron, we do two things:

• Approximate the cost function by a quadratic function.That is, the third-
and higher-order terms in Eq. (4.111) are ignored, which means that we are oper-
ating close to a local minimum on the error surface. On this basis, comparing
Eqs. (4.111) and (4.116), we can make the associations indicated in Table 4.2.

• Formulate the computation of coefficients �(n) and �(n) in the conjugate-gradi-
ent algorithm so as to require only gradient information.

eav(w)

eav(w)

�(n) =
rT(n)r(n)

rT(n - 1)r(n - 1)

�(n) =
rT(n)(r(n) - r(n - 1))

rT(n - 1)r(n - 1)

...,

�(n) = -
sT(n - 1)Ar(n)

sT(n - 1)As(n - 1)

s(n) = r(n) + �(n)s(n - 1),  n = 1, 2, ..., W - 1

r(n) = b - Ax(n)

...,



The latter point is particularly important in the context of multilayer perceptrons because
it avoids using the Hessian H(n), the evaluation of which is plagued with computational
difficulties.

To compute the coefficient �(n) that determines the search direction s(n) without
explicit knowledge of the Hessian H(n), we can use the Polak–Ribière formula of
Eq. (4.128) or the Fletcher–Reeves formula of Eq. (4.129). Both of these formulas involve
the use of residuals only. In the linear form of the conjugate-gradient method, assum-
ing a quadratic function, the Polak–Ribière and Fletcher–Reeves formulas are equiva-
lent. On the other hand, in the case of a nonquadratic cost function, they are not.

For nonquadratic optimization problems, the Polak–Ribière form of the conju-
gate-gradient algorithm is typically superior to the Fletcher–Reeves form of the algo-
rithm, for which we offer the following heuristic explanation (Bertsekas, 1995): Due to
the presence of third- and higher-order terms in the cost function and possible
inaccuracies in the line search, conjugacy of the generated search directions is progres-
sively lost.This condition may in turn cause the algorithm to “jam” in the sense that the
generated direction vector s(n) is nearly orthogonal to the residual r(n).When this phe-
nomenon occurs, we have r(n) � r(n - 1), in which case the scalar �(n) will be nearly zero.
Correspondingly, the direction vector s(n) will be close to r(n), thereby breaking the
jam. In contrast, when the Fletcher–Reeves formula is used, the conjugate-gradient algo-
rithm typically continues to jam under similar conditions.

In rare cases, however, the Polak–Ribière method can cycle indefinitely without
converging. Fortunately, convergence of the Polak–Ribière method can be guaranteed
by choosing

(4.130)

where �PR is the value defined by the Polak–Ribière formula of Eq. (4.128) (Shewchuk,
1994). Using the value of � defined in Eq. (4.130) is equivalent to restarting the conju-
gate gradient algorithm if �PR  0. To restart the algorithm is equivalent to forgetting
the last search direction and starting it anew in the direction of steepest descent.

Consider next the issue of computing the parameter �(n), which determines the
learning rate of the conjugate-gradient algorithm. As with �(n), the preferred method
for computing �(n) is one that avoids having to use the Hessian H(n). We recall that
the line minimization based on Eq. (4.120) leads to the same formula for �(n) as that
derived from the update equation Eq. (4.119). We therefore need a line search,12 the
purpose of which is to minimize the function with respect to �. That is,eav(w + �s)

� = max{�PR, 0}

eav(w)
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TABLE 4.2 Correspondence Between f(x) and eav(w)

Quadratic function f(x) Cost function eav(w)

Parameter vector x(n) Synaptic weight vector w(n)
Gradient vector 0f(x)�0x Gradient vector g = 0eav�0w
Matrix A Hessian matrix H

given fixed values of the vectors w and s, the problem is to vary � such that this func-
tion is minimized. As � varies, the argument w � �s traces a line in the W-dimensional
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vector space of w—hence the name “line search.” A line-search algorithm is an iterative
procedure that generates a sequence of estimates {�(n)} for each iteration of the conjugate-
gradient algorithm. The line search is terminated when a satisfactory solution is found.
The computation of a line search must be performed along each search direction.

Several line-search algorithms have been proposed in the literature, and a good
choice is important because it has a profound impact on the performance of the conjugate-
gradient algorithm in which it is embedded. There are two phases to any line-search
algorithm (Fletcher, 1987):

• the bracketing phase, which searches for a bracket (that is, a nontrivial interval that
is known to contain a minimum), and

• the sectioning phase, in which the bracket is sectioned (i.e., divided), thereby gen-
erating a sequence of brackets whose length is progressively reduced.

We now describe a curve-fitting procedure that takes care of these two phases in a
straightforward manner.

Let denote the cost function of the multilayer perceptron, expressed as aeav(�)

�av(h)

�av(h1)

�av(h3)

h3 h

�av(h2)

h2h10

FIGURE 4.21 Illustration of the
line search.

function of �. It is assumed that is strictly unimodal (i.e., it has a single minimum
in the neighborhood of the current point w(n)) and is twice continuously differentiable.
We initiate the search procedure by searching along the line until we find three points
�1, �2, and �3 such that the following condition is satisfied, as illustrated in Fig. 4.21:

(4.131)

Since is a continuous function of �, the choice described in Eq. (4.131) ensureseav(�)

eav(�1) � eav(�3) � eav(�2)  for �1 6 �2 6 �3

eav(�)

that the bracket [�1, �3] contains a minimum of the function . Provided that the
function is sufficiently smooth, we may consider this function to be parabolic in
the immediate neighborhood of the minimum.Accordingly, we may use inverse parabolic
interpolation to do the sectioning (Press et al., 1988). Specifically, a parabolic function
is fitted through the three original points �1, �2, and �3, as illustrated in Fig. 4.22, where
the solid line corresponds to and the dashed line corresponds to the first iterationeav(�)

eav(�)
eav(�)



of the sectioning procedure. Let the minimum of the parabola passing through the three
points �1, �2, and �3 be denoted by �4. In the example illustrated in Fig. 4.22, we have

and . Point �3 is replaced in favor of �4, making [�1,eav(�4) 6 eav(�1)eav(�4) 6 eav(�2)
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�av(h)

Parabolic
approximation

to �av(h)

Mean-
squared

error

h4 h3 hh2h1

FIGURE 4.22 Inverse parabolic
interpolation.

�4] the new bracket.The process is repeated by constructing a new parabola through the
points �1, �2, and �4.The bracketing-followed-by-sectioning procedure, as illustrated in
Fig. 4.22, is repeated several times until a point close enough to the minimum of 
is located, at which time the line search is terminated.

Brent’s method constitutes a highly refined version of the three-point curve-
fitting procedure just described (Press et al., 1988).At any particular stage of the com-
putation, Brent’s method keeps track of six points on the function , which may
not all be necessarily distinct.As before, parabolic interpolation is attempted through
three of these points. For the interpolation to be acceptable, certain criteria involving
the remaining three points must be satisfied. The net result is a robust line-search
algorithm.

Summary of the Nonlinear Conjugate-Gradient Algorithm

All the ingredients we need to formally describe the nonlinear (nonquadratic) form of
the conjugate-gradient algorithm for the supervised training of a multilayer perceptron
are now in place. A summary of the algorithm is presented in Table 4.3.

Quasi-Newton Methods

Resuming the discussion on quasi-Newton methods, we find that these are basically gra-
dient methods described by the update equation

(4.132)

where the direction vector s(n) is defined in terms of the gradient vector g(n) by

(4.133)s(n) = -S(n)g(n) 

w(n + 1) = w(n) + �(n)s(n) 

eav(�)

eav(�)
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The matrix S(n) is a positive-definite matrix that is adjusted from one iteration to the
next. This is done in order to make the direction vector s(n) approximate the Newton
direction, namely,

Quasi-Newton methods use second-order (curvature) information about the error
surface without actually requiring knowledge of the Hessian. They do so by using two
successive iterates w(n) and w(n � 1), together with the respective gradient vectors g(n)
and g(n � 1). Let

(4.134)

and

(4.135)¢w(n) = w(n + 1) - w(n) 

q(n) = g(n + 1) - g(n) 

-(02eav�0w2)-1 (0eav�0w)

TABLE 4.3 Summary of the Nonlinear Conjugate-Gradient Algorithm for the Supervised Training of a
Multilayer Perceptron

Initialization
Unless prior knowledge on the weight vector w is available, choose the initial value w(0) by using a proce-
dure similar to that described for the back-propagation algorithm.

Computation

1. For w(0), use back propagation to compute the gradient vector g(0).
2. Set s(0) � r(0) � -g(0).

3. At time-step n, use a line search to find �(n) that minimizes sufficiently, representing the cost
function expressed as a function of � for fixed values of w and s.eav

eav(�)

4. Test to determine whether the Euclidean norm of the residual r(n) has fallen below a specified value,
that is, a small fraction of the initial value .7 r(0) 7

5. Update the weight vector:

w(n + 1) = w(n) + �(n)s(n)

6. For w(n � 1), use back propagation to compute the updated gradient vector g(n � 1).

7. Set r(n � 1) � -g(n � 1).

8. Use the Polak–Ribière method to calculate:

�(n + 1) = max e rT(n + 1)(r(n + 1) - r(n))

rT(n)r(n)
, 0 f

9. Update the direction vector:

s(n + 1) = r(n + 1) + �(n + 1)s(n)

10. Set n � n � 1, and go back to step 3.

Stopping criterion. Terminate the algorithm when the condition7 r(n) 7 � � 7 r(0) 7
is satisfied, where � is a prescribed small number.



We may then derive curvature information by using the approximate formula

(4.136)

In particular, given W linearly independent weight increments !w(0), !w(1), ...,

q(n) -' a 0
0w

g(n) b ¢w(n)
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!w(W - 1) and the respective gradient increments q(0), q(1), q(W - 1), we may
approximate the Hessian as

(4.137)

We may also approximate the inverse Hessian as follows13:

(4.138)

When the cost function eav(w) is quadratic, Eqs. (4.137) and (4.138) are exact.
In the most popular class of quasi-Newton methods, the updated matrix S(n � 1)

is obtained from its previous value S(n), the vectors !w(n) and q(n), by using the follow-
ing recursion (Fletcher, 1987; Bertsekas, 1995):

(4.139)

where

(4.140)

and

(4.141)

The algorithm is initiated with some arbitrary positive- definite matrix S(0). The partic-
ular form of the quasi-Newton method is parameterized by how the scalar is
defined, as indicated by the following two points (Fletcher, 1987):

1. For �(n) � 0 for all n, we obtain the Davidon–Fletcher–Powell (DFP) algorithm,
which is historically the first quasi-Newton method.

2. For �(n) � 1 for all n, we obtain the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm, which is considered to be the best form of quasi-Newton methods cur-
rently known.

Comparison of Quasi-Newton Methods with 
Conjugate-Gradient Methods

We conclude this brief discussion of quasi-Newton methods by comparing them with
conjugate-gradient methods in the context of nonquadratic optimization problems
(Bertsekas, 1995):

• Both quasi-Newton and conjugate-gradient methods avoid the need to use the
Hessian. However, quasi-Newton methods go one step further by generating an

�(n)

0 � �(n) � 1  for all n

v(n) =
¢w(n)

¢wT(n)¢w(n)
-

S(n)q(n)

qT(n)S(n)q(n)

+ �(n)[qT(n)S(n)q(n)] [v(n)vT(n)]

S(n + 1) = S(n) +
¢w(n)¢wT(n)

qT(n)q(n)
-

S(n)q(n)qT(n)S(n)

qT(n)S(n)q(n)

H-1 M [¢w(0), ¢w(1), ...,  ¢w(W - 1)] [q(0), q(1), ...,  q(W - 1)]-1

H M [q(0), q(1), ... ,  q(W - 1)] [¢w(0), ¢w(1), ..., ¢w(W - 1)]-1

...,
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approximation to the inverse Hessian. Accordingly, when the line search is accu-
rate and we are in close proximity to a local minimum with a positive-definite Hes-
sian, a quasi-Newton method tends to approximate Newton’s method, thereby
attaining faster convergence than would be possible with the conjugate-gradient
method.

• Quasi-Newton methods are not as sensitive to accuracy in the line-search stage of
the optimization as the conjugate-gradient method.

• Quasi-Newton methods require storage of the matrix S(n), in addition to the
matrix-vector multiplication overhead associated with the computation of the
direction vector s(n).The net result is that the computational complexity of quasi-
Newton methods is O(W2). In contrast, the computational complexity of the
conjugate-gradient method is O(W). Thus, when the dimension W (i.e., size of
the weight vector w) is large, conjugate-gradient methods are preferable to quasi-
Newton methods in computational terms.

It is because of the lattermost point that the use of quasi-Newton methods is restricted,
in practice, to the design of small-scale neural networks.

Levenberg–Marquardt Method

The Levenberg–Marquardt method, due to Levenberg (1994) and Marquardt (1963), is
a compromise between the following two methods:

• Newton’s method, which converges rapidly near a local or global minimum, but
may also diverge;

• Gradient descent, which is assured of convergence through a proper selection of
the step-size parameter, but converges slowly.

To be specific, consider the optimization of a second-order function F(w), and let g be
its gradient vector and H be its Hessian.According to the Levenberg–Marquardt method,
the optimum adjustment applied to the parameter vector w is defined by

(4.142)

where I is the identity matrix of the same dimensions as H and � is a regularizing, or
loading, parameter that forces the sum matrix (H � �I) to be positive definite and safely
well conditioned throughout the computation. Note also that the adjustment of
Eq. (4.142) is a minor modification of the formula defined in Eq. (4.115).

With this background, consider a multilayer perceptron with a single output neu-
ron. The network is trained by minimizing the cost function

(4.143)

where {x(i), d(i)} is the training sample and F(x(i); w) is the approximating function
realized by the network; the synaptic weights of the network are arranged in some
orderly manner to form the weight vector w. The gradient and the Hessian of the cost
function eav(w) are respectively defined by

N
i = 1

eav(w) =
1

2Na
N

i = 1
[d(i) - F(x(i); w)]2 

¢w

¢w = [H + 
I]-1g 

¢w



(4.144)

and

(4.145)

Thus, substituting Eqs. (4.144) and (4.145) into Eq. (4.142), the desired adjustment 
is computed for each iteration of the Levenberg-Marquardt algorithm.

However, from a practical perspective, the computational complexity of 
Eq. (4.145) can be demanding, particularly when the dimensionality of the weight
vector w is high; the computational difficulty is attributed to the complex nature of
the Hessian H(w). To mitigate this difficulty, the recommended procedure is to ignore
the second term on the right-hand side of Eq. (4.145), thereby approximating the
Hessian simply as

(4.146)

This approximation is recognized as the outer product of the partial derivative
with itself, averaged over the training sample; accordingly, it is referred

to as the outer-product approximation of the Hessian. The use of this approximation is
justified when the Levenberg-Marquardt algorithm is operating in the neighborhood
of a local or global minimum.

Clearly, the approximate version of the Levenberg–Marquardt algorithm, based on
the gradient vector of Eq. (4.144) and the Hessian of Eq. (4.146), is a first-order method
of optimization that is well suited for nonlinear least-squares estimation problems. More-
over, because of the fact that both of these equations involve averaging over the train-
ing sample, the algorithm is of a batch form.

The regularizing parameter plays a critical role in the way the Levenberg-
Marquardt algorithm functions. If we set equal to zero, then the formula of Eq. (4.142)
reduces to Newton’s method. On the other hand, if we assign a large value to such
that overpowers the Hessian H, the Levenberg-Marquardt algorithm functions effec-
tively as a gradient descent method. From these two observations, it follows that at each
iteration of the algorithm, the value assigned to should be just large enough to main-
tain the sum matrix in its positive-definite form. In specific terms, the
recommended Marquardt recipe for the selection of is as follows (Press et al.,) 1988:

1. Compute at iteration 
2. Choose a modest value for say 
 = 10- 3.
,

n - 1.eav(w)



(H + 
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