

ASK - definition

Amplitude Shift Keying (ASK) modulation, often denoted discrete Pulse Amplitude Modulation (PAM)

Different signals are obtained changing the amplitude of one single pulse

 $s_m(t) = A_m \ p(t) \qquad m = 1, \dots, M$

Amplitudes are usually assumed to be equally spaced and symmetric around the origin

$$A_m = -\frac{M-1}{2}\Delta + (m-1)\Delta \qquad m = 1, \dots, M$$

where Δ is the absolute difference between adjacent amplitudes

Outline

ASK - constellation

The signal space has dimension N = 1, thus

$$\psi(t) = \frac{1}{\sqrt{\mathcal{E}_p}} p(t)$$
 where $\mathcal{E}_p = \int_0^T p^2(t) dt$

The single component representing the mth signal is

 $s_m = A_m \sqrt{\mathcal{E}_p}$

thus the signal constellation is (M = 4)

$$-\frac{3\Delta}{2}\sqrt{\mathcal{E}_p} - \frac{\Delta}{2}\sqrt{\mathcal{E}_p} \stackrel{0}{0} + \frac{\Delta}{2}\sqrt{\mathcal{E}_p} + \frac{3\Delta}{2}\sqrt{\mathcal{E}_p} \stackrel{\psi}{\psi}$$

Digital Communications - Lecture 05

3 / 48

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

2 / 48

ASK - distance set

The distance set from the mth constellation point is dependent on m

The constellation does not exhibit a symmetric scenario w.r.t. each signal

The minimum distance is $d_{min} = \Delta \sqrt{\mathcal{E}_p}$

Each outer constellation point has 1 neighbor at minimum distance Each inner constellation point has 2 neighbors at minimum distance

ASK - MAP (1/2)

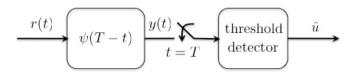
The MAP decision rule is

$$\hat{u} = \arg \max_{m} \left\{ p_{m} f_{r|H_{m}}(r) \right\}$$

$$= \arg \max_{m} \left\{ \eta_{0} \log(p_{m}) - (r - s_{m})^{2} \right\}$$

$$= \arg \max_{m} \left\{ 2s_{m}r + \eta_{0} \log(p_{m}) - s_{m}^{2} \right\}$$

and corresponds to the following receiver



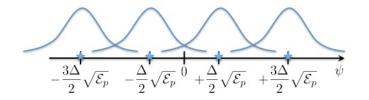
ASK - received signal

M possible hypotheses in $t \in [0,T)$

$$H_m$$
 : $r(t) = A_m p(t) + w(t)$ $m = 1, ..., M$

The sufficient statistic is

$$r|H_m = A_m \sqrt{\mathcal{E}_p} + w \qquad \sim \mathcal{N}\left(A_m \sqrt{\mathcal{E}_p}, \eta_0/2\right)$$



	. ₹	◆夏≯	1	9 Q (?
P. Salvo Rossi (SUN.DIII)	Digital Communications - Lecture 05			6 / 48

ASK - MAP (2/2)

The thresholds $\{\lambda_0, \ldots, \lambda_M\}$ are defined as follows

$$r \in (\lambda_{m-1}, \lambda_m) \qquad \rightarrow \qquad \hat{u} = a_m$$

thus $\lambda_0 = -\infty$, $\lambda_M = +\infty$, while for the inner thresholds

$$p_m f_{r|H_m}(\lambda_m) = p_{m+1} f_{r|H_{m+1}}(\lambda_m)$$

i.e.

$$\lambda_m = \frac{s_{m+1} + s_m}{2} + \frac{\eta_0}{2(s_{m+1} - s_m)} \log\left(\frac{p_m}{p_{m+1}}\right) \qquad m = 1, \dots, M - 1$$

For ML decision rule

$$\lambda_m = \frac{s_{m+1} + s_m}{2} \qquad m = 1, \dots, M - 1$$

- 20

<ロト < 回 > < 回 > < 回 > < 回 > :

ASK - SER (1/3)

P. Salvo Rossi (SUN.DIII)

SER for equiprobable symbols with ML detection is

$$P_e = \frac{1}{M} \sum_{m=1}^{M} \Pr(e|H_m)$$

= $\frac{1}{M} (2 \Pr(e|H_1) + (M-2) \Pr(e|H_2))$
= $\frac{1}{M} \left(2Q \left(\Delta \sqrt{\frac{\mathcal{E}_p}{2\eta_0}} \right) + (M-2)2Q \left(\Delta \sqrt{\frac{\mathcal{E}_p}{2\eta_0}} \right) \right)$
= $\frac{2(M-1)}{M} Q \left(\Delta \sqrt{\frac{\mathcal{E}_p}{2\eta_0}} \right)$

P. Salvo Rossi (SUN.DIII)	 < □ > < ♂ > < ≥ > < Digital Communications - Lecture 05 	(E) E () 9/
ASK - SER (3/3)		
$P_{e}(\gamma)$	$P_e(\gamma_b)$	
100	10°	
10-1	101	
10-2	- u ⁴	
Б 10 ⁻³	H Io	
0 5	10 15 0 5 10	15

The energy required for a target P_e increases with the cardinality M

Digital Communications - Lecture 05

・ロト ・四ト ・ヨト ・ヨト

E 990

11 / 48

Average energy	per	symbol,	in	case of	equiprobable	symbols,	is

$$\mathcal{E} = \frac{1}{M} \sum_{m=1}^{M} A_m^2 \mathcal{E}_p = \frac{M^2 - 1}{12} \Delta^2 \mathcal{E}_p$$

where $\sum_{m=1}^M m = M(M+1)/2$ and $\sum_{m=1}^M m^2 = M(M+1)(2M+1)/6$ have been used, thus

$$P_e = 2\left(1 - \frac{1}{M}\right)Q\left(\sqrt{\frac{6}{M^2 - 1}\gamma}\right)$$
$$= 2\left(1 - \frac{1}{M}\right)Q\left(\sqrt{\frac{6\log_2(M)}{M^2 - 1}\gamma_b}\right)$$

PSK - definition

P. Salvo Rossi (SUN.DIII)

ASK - SER (2/3)

Phase Shift Keying modulation

Different signals are obtained changing the phase of one single sinusoid

$$s_m(t) = A\cos(2\pi f_0 t + \theta_m)\operatorname{rect}\left(\frac{t - T/2}{T}\right)$$
 $m = 1, \dots, M$

Phases are usually assumed to be equally spaced in $[0, 2\pi)$ or $[-\pi, +\pi)$

$$\theta_m = \phi + (m-1)\frac{2\pi}{M}$$
 $m = 1, \dots, M$

where ϕ is the initial phase reference (often assumed null)

One of the following conditions is usually assumed

```
2f_0T \in \mathbb{N}f_0T >> 1
```

< □ > < ♂ > < ≥ > < ≥ >
Digital Communications - Lecture 05

PSK - constellation (1/2)

Signal have all the same energy

$$\mathcal{E} = \int_0^T A^2 \cos^2(2\pi f_0 t + \theta_m) dt$$
$$= \frac{A^2 T}{2} + \frac{A^2}{2} \int_0^T \cos(2\pi 2 f_0 t + 2\theta_m) dt$$
$$\approx \frac{A^2 T}{2}$$

The signal space has dimension N = 2 as

$$s_m(t) = (A\cos(\theta_m)\cos(2\pi f_0 t) - A\sin(\theta_m)\sin(2\pi f_0 t))\operatorname{rect}\left(\frac{t - T/2}{T}\right)$$

and

$$\int_0^T \cos(2\pi f_0 t) \sin(2\pi f_0 t) dt \approx 0$$

P. Salvo Rossi (SUN.DIII) Digital Communications - Lecture 05

PSK - distance set

The distance set from the mth constellation point is NOT dependent on m

The constellation DOES exhibit a symmetric scenario w.r.t. each signal

The minimum distance is $d_{min} = 2\sqrt{\mathcal{E}}\sin\left(\pi/M\right)$

Each constellation point has 2 neighbors at minimum distance

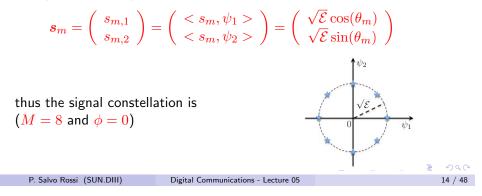
PSK - constellation (2/2)

A possible orthonormal set of signals is

$$\psi_1(t) = +\sqrt{\frac{2}{T}}\cos(2\pi f_0 t)\operatorname{rect}\left(\frac{t-T/2}{T}\right)$$

$$\psi_2(t) = -\sqrt{\frac{2}{T}}\sin(2\pi f_0 t)\operatorname{rect}\left(\frac{t-T/2}{T}\right)$$

The (2-dimensional) vector representing the mth signal is



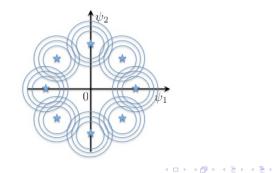
PSK - received signal

M possible hypotheses in $t \in [0,T)$

$$H_m$$
 : $r(t) = A\cos(2\pi f_0 t + \theta_m) + w(t)$ $m = 1, ..., M$

The sufficient statistic is

$$m{r}|H_m = m{s}_m + m{w} \qquad \sim \mathcal{N}\left(m{s}_m, rac{\eta_0}{2}m{I}_2
ight)$$



15 / 48

▲口 → ▲御 → ▲注 → ▲注 →

13 / 48

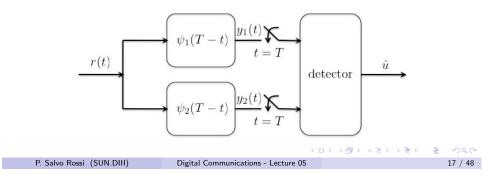
PSK - MAP

í

The MAP decision rule is

$$\begin{aligned} \hat{\boldsymbol{\mu}} &= \arg \max_{m} \left\{ p_{m} f_{\boldsymbol{r}|H_{m}}(\boldsymbol{r}) \right\} \\ &= \arg \max_{m} \left\{ \eta_{0} \log(p_{m}) - \|\boldsymbol{r} - \boldsymbol{s}_{m}\|^{2} \right\} \\ &= \arg \max_{m} \left\{ r_{1} \cos(\theta_{m}) + r_{2} \sin(\theta_{m}) + \frac{\eta_{0}}{2\sqrt{\mathcal{E}}} \log(p_{m}) \right\} \end{aligned}$$

and corresponds to the following receiver



PSK - SER (1/2)

SER for equiprobable symbols with ML detection is

$$P_{e} = 1 - \frac{1}{M} \sum_{m=1}^{M} \Pr(c|H_{m}) = 1 - \Pr(c|H_{1})$$

= $1 - \iint_{\Omega_{1}} \frac{1}{\pi \eta_{0}} \exp\left(-\frac{\left(r_{1} - \sqrt{\mathcal{E}}\right)^{2} + r_{2}^{2}}{\eta_{0}}\right) dr_{1} dr_{2}$
= $1 - \frac{\exp(-\mathcal{E}/\eta_{0})}{\pi \eta_{0}} \int_{-\pi/M}^{+\pi/M} \int_{0}^{+\infty} \rho \exp\left(\frac{2\sqrt{\mathcal{E}}\rho\cos(\theta) - \rho^{2}}{\eta_{0}}\right) d\rho d\theta$

Average energy per symbol is \mathcal{E} and average energy per bit is $\mathcal{E}/\log_2(M)$

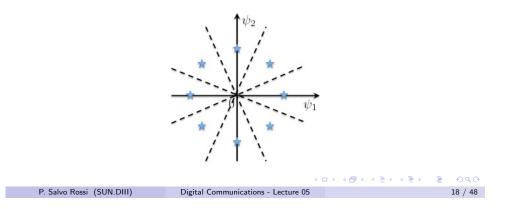
PSK - ML

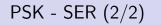
The ML decision rule is

$$\hat{u} = \arg \min_{m} \{ \|\boldsymbol{r} - \boldsymbol{s}_{m}\|^{2} \}$$

= $\arg \max_{m} \{ r_{1} \cos(\theta_{m}) + r_{2} \sin(\theta_{m}) \}$

and corresponds to the following regions



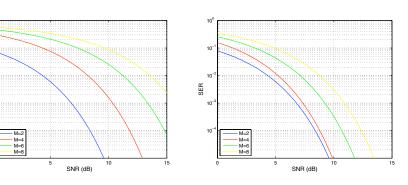


10

10

10 Head

10



The energy required for a target P_e increases with the cardinality M

<ロト < 四ト < 三ト < 三ト :

BPSK and QPSK

Binary Phase Shift Keying (BPSK) is a binary modulation format with signals $\{-p(t), +p(t)\}$, thus including both ASK and PSK with M = 2

$$P_e = Q\left(\sqrt{2\gamma}\right)$$
$$= Q\left(\sqrt{2\gamma_b}\right)$$

Quaternary Phase Shift Keying (QPSK) is a quaternary modulation format with signals $\{-p_1(t), +p_1(t), -p_2(t), +p_2(t)\}$, with $\langle p_1, p_2 \rangle = 0$, thus including PSK with M = 4

$$P_e = 2Q\left(\sqrt{\gamma}\right) - Q^2\left(\sqrt{\gamma}\right) \approx 2Q\left(\sqrt{\gamma}\right)$$
$$= 2Q\left(\sqrt{2\gamma_b}\right)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで Digital Communications - Lecture 05

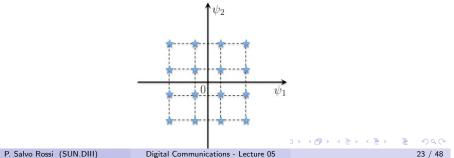
QAM - definition

Quadrature Amplitude Modulation (QAM) is the most common format in current communication systems.

It is a special case of ASK/PSK modulation with signal constellation placed on a regular grid.

$$s_m(t) = (A_m \cos(2\pi f_0 t) + B_m \sin(2\pi f_0 t)) \operatorname{rect}\left(\frac{t - T/2}{T}\right)$$

The signal space has dimension N = 2. Usually $M = 2^{2p}$.



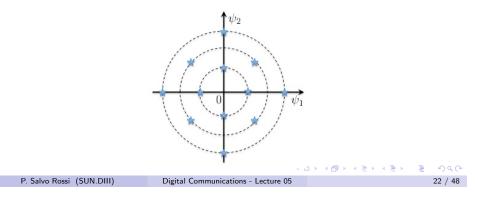
ASK/PSK

It combines both ASK and PSK modulations, thus different signals are obtained changing the amplitude and/or the phase of a sinusoid

$$s_m(t) = A_m \cos(2\pi f_0 t + \theta_m) \operatorname{rect}\left(\frac{t - T/2}{T}\right)$$

The signal space has dimension N = 2

There is no general expression for the performance including all cases



QAM - distance set

The distance set from the mth constellation point is dependent on m

The constellation does not exhibit a symmetric scenario w.r.t. each signal

The minimum distance is $d_{min} = \Delta \sqrt{\mathcal{E}_p}$

Each corner constellation point has 2 neighbors at minimum distance Each outer constellation point has 3 neighbors at minimum distance Each inner constellation point has 4 neighbors at minimum distance

21 / 48

・ロト ・個ト ・ヨト ・ヨト

QAM - ML

Assuming $M = 2^{2p}$, three kinds of integrals must be computed and combined appropriately

$$P_{\text{red}} = \left(1 - Q\left(\frac{d}{\sqrt{2\eta_0}}\right)\right)^2 \approx 1 - 2Q\left(\frac{d}{\sqrt{2\eta_0}}\right)$$

$$P_{\text{green}} = \left(1 - Q\left(\frac{d}{\sqrt{2\eta_0}}\right)\right) \left(1 - 2Q\left(\frac{d}{\sqrt{2\eta_0}}\right)\right)$$

$$\approx 1 - 3Q\left(\frac{d}{\sqrt{2\eta_0}}\right)$$

$$P_{\text{yellow}} = \left(1 - 2Q\left(\frac{d}{\sqrt{2\eta_0}}\right)\right)^2 \approx 1 - 4Q\left(\frac{d}{\sqrt{2\eta_0}}\right)$$

$$P_{\text{green}} = 1 - \frac{4}{M}\left(P_{\text{red}} + (\sqrt{M} - 2)P_{\text{green}} + (M/4 + 1 - \sqrt{M})P_{\text{yellow}}\right)$$

$$\approx 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\frac{d}{\sqrt{2\eta_0}}\right)$$

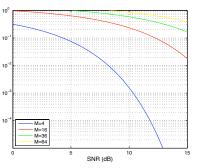
$$P_{\text{Sav Rossi}}(\text{SUN.DHI}$$

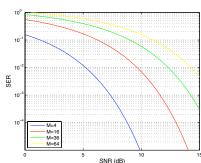
 $P_e(\gamma_b)$

QAM - SER (2/2)

 $P_e(\gamma)$

SER





The energy required for a target P_e increases with the cardinality M

QAM - SER (1/2)

Assuming $M = 2^{2p}$, the average energy of the constellation is twice the average energy of a PAM constellation with cardinality \sqrt{M} , thus

$$\mathcal{E} = \frac{M-1}{6}d^2$$

and

$$P_e \approx 4\left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3}{M-1}\gamma}\right)$$
$$= 4\left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3\log_2(M)}{M-1}\gamma_b}\right)$$

from which it is worth noticing that $SER(\gamma_b)$ of $M^2 - QAM$ is twice $SER(\gamma_b)$ of M - PAM with equal distance among adjacent symbols

Orthogonal Modulation - definition

The set of signals is made of M orthogonal waveforms, i.e.

$$\langle s_m, s_\ell \rangle = \mathcal{E}_m \delta_{m,\ell}$$

A possible orthonormal set of signals is simply obtained as

$$\psi_m(t) = \frac{1}{\sqrt{\mathcal{E}_m}} s_m(t) \qquad m = 1, \dots, M$$

The signal space has dimension N = M

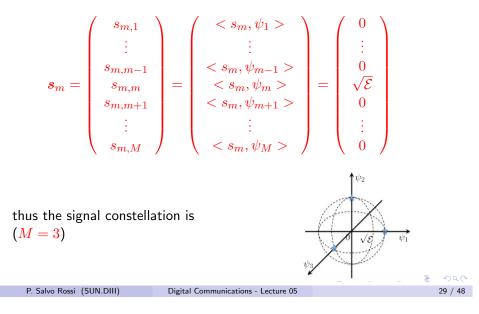
Signals are usually chosen with equal energy, thus

 $\mathcal{E}_m = \mathcal{E}$ $m = 1, \dots, M$

		• 🗆	▶ • @ ▶	${\bf e}\equiv {\bf e}$	く置き	Э.	596
P. Salvo Rossi (SUN.DIII)	Digital Communications - Lecture 05						27 / 48

Orthogonal Modulation - constellation

The (M-dimensional) vector representing the mth signal is



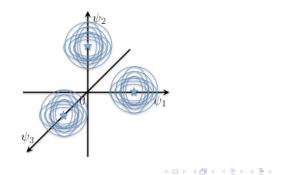
Orthogonal Modulation - received signal

M possible hypotheses in $t \in [0,T)$

$$H_m$$
 : $r(t) = s_m(t) + w(t)$ $m = 1, ..., M$

The sufficient statistic is

$$oldsymbol{r}|H_m=oldsymbol{s}_m+oldsymbol{w} ~~\sim \mathcal{N}\left(oldsymbol{s}_m,rac{\eta_0}{2}oldsymbol{I}_2
ight)$$



Orthogonal Modulation - distance set

The distance set from the *m*th constellation point is NOT dependent on *m* The constellation DOES exhibit a symmetric scenario w.r.t. each signal The minimum distance is $d_{min} = \sqrt{2\mathcal{E}}$

Each constellation point has M-1 neighbors at minimum distance

Orthogonal Modulation - MAP and ML

The MAP decision rule is

$$\hat{u} = \arg \max_{m} \left\{ p_{m} f_{\boldsymbol{r}|H_{m}}(\boldsymbol{r}) \right\}$$

$$= \arg \max_{m} \left\{ \eta_{0} \log(p_{m}) - \|\boldsymbol{r} - \boldsymbol{s}_{m}\|^{2} \right\}$$

$$= \arg \max_{m} \left\{ r_{m} + \frac{\eta_{0}}{2\sqrt{\mathcal{E}}_{m}} \log(p_{m}) - \frac{\sqrt{\mathcal{E}}_{m}}{2} \right\}$$

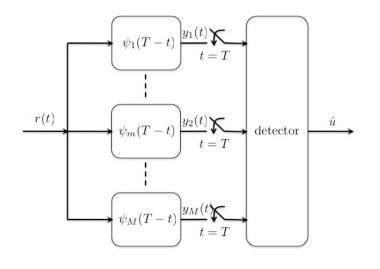
The $\ensuremath{\mathsf{ML}}$ decision rule, in case of signals with equal energy, is

$$\hat{u} = \arg\min_{m} \{ \| \boldsymbol{r} - \boldsymbol{s}_{m} \|^{2} \}$$

= $\arg\max_{m} \{ r_{m} \}$

イロト イポト イヨト イヨト

Orthogonal Modulation - receiver

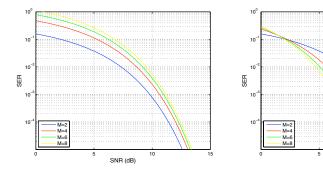


	<	미 에 에 🗗 에 에 트 에 에 트 에 👘	き うくぐ
P. Salvo Rossi (SUN.DIII)	Digital Communications - Lecture 05		33 / 48

Orthogonal Modulation - SER
$$(2/2)$$

 $P_e(\gamma)$

 $P_e(\gamma_b)$



The energy required for a target P_e decreases with the cardinality M

The limit is $\gamma_b > \log(2) = -1.6 \text{ dB}$

P. Salvo Rossi	(SUN.DIII)	Digital Comm

nunications - Lecture 05

SNR (dB)

・ロト ・四ト ・ヨト ・ヨト

35 / 48

3

Orthogonal Modulation - SER (1/2)

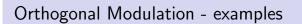
SER for equiprobable and equal-energy symbols with ML detection is

$$P_{e} = 1 - \frac{1}{M} \sum_{m=1}^{M} \Pr(c|H_{m}) = 1 - \Pr(c|H_{1})$$

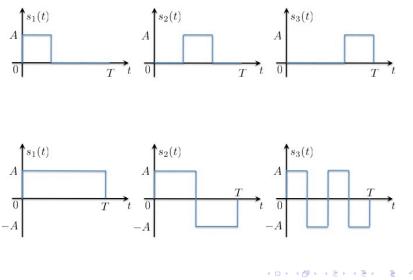
= $1 - \int \dots \int_{\Omega_{1}} \left(\frac{1}{\pi\eta_{0}}\right)^{M/2} \exp\left(-\frac{\left(r_{1} - \sqrt{\mathcal{E}}\right)^{2} + \sum_{m=2}^{M} r_{m}^{2}}{\eta_{0}}\right) dr_{1} \dots dr_{M}$
= $1 - \frac{1}{\sqrt{\pi\eta_{0}}} \int_{\mathbb{R}} \exp\left(-\frac{(r - \sqrt{\mathcal{E}})^{2}}{\eta_{0}}\right) \left(1 - Q\left(\frac{r}{\sqrt{\eta_{0}/2}}\right)\right)^{M-1} dr$

Average energy per symbol is \mathcal{E} and average energy per bit is $\mathcal{E}/\log_2(M)$

	4	3	596
P. Salvo Rossi (SUN.DIII)	Digital Communications - Lecture 05	3	34 / 48



P. Salvo Rossi (SUN.DIII)



Digital Communications - Lecture 05

FSK - definition

Frequency Shift Keying (ASK) modulation, different signals are obtained changing the frequency of one single sinusoid

$$s_m(t) = A\cos(2\pi f_m t + \phi_m)\operatorname{rect}\left(\frac{t - T/2}{T}\right) \qquad m = 1, \dots, M$$

where phases are usually assumed to be equal $(\phi_m = 0)$

Frequencies are usually assumed to be equally spaced and symmetric around the carrier frequency (f_0)

$$f_m = f_0 - \frac{M-1}{2}\Delta + (m-1)\Delta$$
 $m = 1, ..., M$

where Δ is the absolute difference between adjacent frequencies

Also, $f_0T >> 1$ is usually assumed

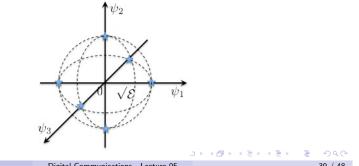
▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで P. Salvo Rossi (SUN.DIII) Digital Communications - Lecture 05

Biorthogonal Signals - definition

A set of M biorthogonal signals is made of M/2 orthogonal signals plus their M/2 negatives

$$\langle s_m, s_\ell \rangle = \begin{cases} +\mathcal{E} & m = \ell \\ -\mathcal{E} & |m-\ell| = M/2 \\ 0 & \text{else} \end{cases}$$

The signal space has dimension N = M/2



FSK - orthogonality

$$< s_m, s_\ell >= \int_0^T A^2 \cos(2\pi f_m t + \phi_m) \cos(2\pi f_\ell t + \phi_\ell) dt$$
$$\approx \frac{A^2}{2} \int_0^T \cos(2\pi (m-\ell)\Delta t + \phi_m - \phi_\ell) dt$$
$$= \frac{A^2}{4\pi (m-\ell)\Delta} \left(\sin(2\pi (m-\ell)\Delta T + \phi_m - \phi_\ell) - \sin(\phi_m - \phi_\ell)\right)$$

In order to have orthogonal FSK, i.e. $\langle s_m, s_\ell \rangle = \mathcal{E}\delta_{m,\ell} = (A^2T/2)\delta_{m,\ell}$, the following condition is needed

$$\Delta = \frac{k}{T} \qquad \qquad \Delta_{min} = \frac{1}{T}$$

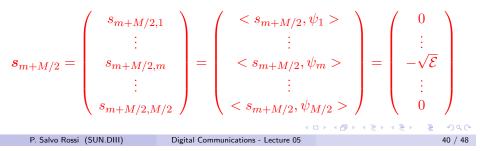
while in case of equal phases (e.g. $\phi_m = 0$)

$$\Delta = \frac{k}{2T} \qquad \Delta_{min} = \frac{1}{2T}$$
P. Salvo Rossi (SUN.DIII) Digital Communications - Lecture 05 38 / 48

Biorthogonal Modulation - constellation The (M/2-dimensional) vector representing the *m*th signal is

$$\boldsymbol{s}_{m} = \begin{pmatrix} s_{m,1} \\ \vdots \\ s_{m,m} \\ \vdots \\ s_{m,M/2} \end{pmatrix} = \begin{pmatrix} < s_{m}, \psi_{1} > \\ \vdots \\ < s_{m}, \psi_{m} > \\ \vdots \\ < s_{m}, \psi_{M/2} > \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ +\sqrt{\mathcal{E}} \\ \vdots \\ 0 \end{pmatrix}$$

The (M/2-dimensional) vector representing the (m + M/2)th signal is



Biorthogonal Modulation - distance set

The distance set from the mth constellation point is NOT dependent on m

The constellation DOES exhibit a symmetric scenario w.r.t. each signal

The minimum distance is $d_{min} = \sqrt{2\mathcal{E}}$

Each constellation point has M-2 neighbors at minimum distance and also 1 neighbor at distance $2\sqrt{\mathcal{E}}$

Biorthogonal Modulation - SER

SER for equiprobable and equal-energy symbols with ML detection is

$$P_{e} = 1 - \frac{1}{M} \sum_{m=1}^{M} \Pr(c|H_{m}) = 1 - \Pr(c|H_{1})$$

$$= 1 - \int \dots \int_{\Omega_{1}} \left(\frac{1}{\pi\eta_{0}}\right)^{M/4} \exp\left(-\frac{\left(r_{1} - \sqrt{\mathcal{E}}\right)^{2} + \sum_{m=2}^{M/2} r_{m}^{2}}{\eta_{0}}\right) dr_{1} \dots dr_{\frac{M}{2}}$$

$$= 1 - \frac{1}{\sqrt{\pi\eta_{0}}} \int_{0}^{+\infty} \exp\left(-\frac{(r - \sqrt{\mathcal{E}})^{2}}{\eta_{0}}\right) \left(1 - 2Q\left(\frac{r}{\sqrt{\eta_{0}/2}}\right)\right)^{\frac{M}{2} - 1} dr$$

Average energy per symbol is \mathcal{E} and average energy per bit is $\mathcal{E}/\log_2(M)$

Performance are similar to orthogonal modulation

P. Salvo Rossi (SUN.DIII)	Ρ.	Salvo Ross	i (SUN.DIII)
---------------------------	----	------------	--------------

Digital Communications - Lecture 05

• • • • • • • • •

43 / 4

The ML decision rule, in case of signals with equal energy, is

$$\hat{u} = \arg\min_{m} \left\{ \|\boldsymbol{r} - \boldsymbol{s}_{m}\|^{2} \right\}$$
$$= \operatorname{sign} \left(\arg\max_{n} \left\{ |r_{n}| \right\} \right)$$

i.e.

P. Salvo

$$\begin{array}{llllllllll} \Omega_{1} & = & \{r_{1} > |r_{n}| \; \forall n \neq 1, \; r_{1} > 0\} \\ & & & \\ & & \\ \Omega_{M/2} & = \; \left\{r_{M/2} > |r_{n}| \; \forall n \neq M/2, \; r_{M/2} > 0\right\} \\ \Omega_{1+M/2} & = \; \left\{r_{1} > |r_{n}| \; \forall n \neq 1, \; r_{1} < 0\right\} \\ & & \\ & & \\ \Omega_{M} & = \; \left\{r_{M/2} > |r_{n}| \; \forall n \neq M/2, \; r_{M/2} < 0\right\} \end{array}$$

Rossi (SUN.DIII) Digital Communications - Lecture 05 42 / 48

Simplex Signals - definition

A set of M simplex signals is built upon a set of M orthogonal signals as

$$\tilde{s}_m(t) = s_m(t) - s_\mu(t) \qquad m = 1, \dots, N$$

where $\{s_1(t), \ldots, s_M(t)\}$ is the set of orthogonal signals and where $s_\mu(t) = (1/M) \sum_{m=1}^M s_m(t)$ is the mean signal

Shift of the origin in the signal space, thus distances are kept

Simplex signals are equally correlated

P. Salvo Rossi (SUN.DIII)

$$\langle s_m, s_\ell \rangle = \begin{cases} \left(\frac{M-1}{M}\right) \mathcal{E}_o = \mathcal{E} & m = \ell \\ -\frac{1}{M} \mathcal{E}_o & m \neq \ell \end{cases}$$

The signal space has dimension N = M - 1 $(\sum_{m=1}^{M} \tilde{s}_m(t) = 0)$

4 / 48

Simplex Signals - constellation

The (M-dimensional) vector representing the mth signal (in the original signal space) is

$$\boldsymbol{s}_{m} = \begin{pmatrix} s_{m,1} \\ \vdots \\ s_{m,m-1} \\ s_{m,m} \\ s_{m,m+1} \\ \vdots \\ s_{m,M} \end{pmatrix} = \begin{pmatrix} < s_{m}, \psi_{1} > \\ \vdots \\ < s_{m}, \psi_{m-1} > \\ < s_{m}, \psi_{m} > \\ < s_{m}, \psi_{m+1} > \\ \vdots \\ < s_{m}, \psi_{M} > \end{pmatrix} = \begin{pmatrix} -\frac{\sqrt{\mathcal{E}_{o}}}{M} \\ \vdots \\ -\frac{\sqrt{\mathcal{E}_{o}}}{M} \\ \vdots \\ -\frac{\sqrt{\mathcal{E}_{o}}}{M} \\ \vdots \\ -\frac{\sqrt{\mathcal{E}_{o}}}{M} \end{pmatrix}$$

Signals from Binary Codes

Consider a set of N orthogonal signals, e.g.

$$p_n(t) = \sqrt{\frac{2\mathcal{E}_c}{T_c}} \cos(2\pi f_c t) \operatorname{rect}\left(\frac{t - T_c/2 - nT_c}{T_c}\right) , \quad n = 1, \dots, N$$

with $T_c = T/N$ and $\mathcal{E}_c = \mathcal{E}/N$

Consider a binary representation of the $M \leq 2^N$ symbols, $a_m \equiv (b_{m,1}, \ldots, b_{m,N})$ with $b_{m,n} \in \{0,1\}$ BPSK can be used to represent the *n*th component of the codeword

$$b_{m,n} = 0 \rightarrow -p_n(t) \qquad , \qquad b_{m,n} = 1 \rightarrow +p_n(t)$$

thus $c_{m,n}=2b_{m,n}-1\in\{-1,+1\}$ and

$$s_m(t) = \sum_{n=1}^{N} c_{m,n} p_n(t), \qquad m = 1, \dots, M$$

P. Salvo Rossi (SUN.DIII)

Digital Communications - Lecture 05

・ロト ・四ト ・ヨト ・ヨト

47 / 48

Simplex Signals - SER

Distance-set properties are the same as for the original orthogonal set

SER is the same as an orthogonal modulation with $\mathcal{E}_o = \left(\frac{M}{M-1}\right) \mathcal{E}$

$$P_e = 1 - \int_{\mathbb{R}} \exp\left(-\frac{\left(r - \sqrt{\left(\frac{M}{M-1}\right)\mathcal{E}}\right)^2}{\eta_0}\right) \left(1 - Q\left(\frac{r}{\sqrt{\eta_0/2}}\right)\right)^{M-1} \frac{dr}{\sqrt{\pi\eta_0}}$$

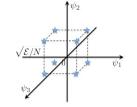
i.e. a gain of $10 \log_{10}\left(\frac{M}{M-1}\right) \, \mathrm{dB}$

Signals from Binary Codes - constellation

The (N-dimensional) vector representing the mth signal

$$\boldsymbol{s}_{m} = \begin{pmatrix} s_{m,1} \\ \vdots \\ s_{m,m} \\ \vdots \\ s_{m,M} \end{pmatrix} = \begin{pmatrix} \langle s_{m}, \psi_{1} \rangle \\ \vdots \\ \langle s_{m}, \psi_{m} \rangle \\ \vdots \\ \langle s_{m}, \psi_{M} \rangle \end{pmatrix} = \begin{pmatrix} c_{m,1}\sqrt{\frac{\mathcal{E}}{N}} \\ \vdots \\ c_{m,m}\sqrt{\frac{\mathcal{E}}{N}} \\ \vdots \\ c_{m,N}\sqrt{\frac{\mathcal{E}}{N}} \end{pmatrix}$$

i.e. one of the 2^N vertices of an N-dimensional hypercube



P. Salvo Rossi (SUN.DIII)