

ML Receiver and Voronoi Diagram

- $\mathcal{A} = \{a_1, \dots, a_M\}$: *M*-ary modulation
- $\Pi = \{1/M, \dots, 1/M\}$: equiprobable symbols
- $\{s_1(t), \ldots, s_M(t)\}, t \in [0, T)$: arbitrary modulation format
- $\{\psi_1(t), \dots, \psi_N(t)\}, t \in [0, T)$: *N*-dimensional signal space
- $\boldsymbol{s}_m = (s_{m,1}, \ldots, s_{m,N})^T \in \mathbb{R}^N$: *m*th constellation point

The ML detector corresponds to the Voronoi diagram around each constellation point, bounded by hyperplanes in \mathbb{R}^N

Given M reference points in \mathbb{R}^N , the Voronoi diagram is the partition of \mathbb{R}^N into M regions, namely the Voronoi cells, each including the points closer to a specific reference point than others

Exact SER and Voronoi Cells

Digital Communications - Lecture 06

・ロト ・日下 ・ 田下

SER-BER for Binary Modulation
$$(1/3)$$

$$s_{1} = \begin{pmatrix} s_{1,1} \\ s_{1,2} \end{pmatrix} , \quad s_{2} = \begin{pmatrix} s_{2,1} \\ s_{2,2} \end{pmatrix}$$

$$The correlation coefficient is$$

$$\rho \triangleq \frac{\langle s_{1}, s_{2} \rangle}{\sqrt{\mathcal{E}_{1}}\sqrt{\mathcal{E}_{2}}}$$

$$d^{2} = \|\mathbf{s}_{1} - \mathbf{s}_{2}\|^{2} = \int_{0}^{T} (s_{1}(t) - s_{2}(t))^{2} dt$$
$$= \mathcal{E}_{1} + \mathcal{E}_{2} - 2\rho\sqrt{\mathcal{E}_{1}}\sqrt{\mathcal{E}_{2}}$$

and in the case of equal-energy signals, i.e. $\mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E}$

$$d^2 = 2(1-\rho)\mathcal{E}$$

	< □	3	500
P. Salvo Rossi (SUN.DIII)	Digital Communications - Lecture 06		5 / 16

SER-BER for Binary Modulation (3/3)

 $P_e = Q\left(\sqrt{(1-\rho)\gamma}\right) = Q\left(\sqrt{(1-\rho)\gamma_b}\right)$

- antipodal signals (i.e. $\rho = -1$): $P_e = Q(\sqrt{2\gamma})$, best performance orthogonal signals (i.e. $\rho = 0$): $P_e = Q(\sqrt{\gamma})$, 3 dB loss

SER-BER for Binary Modulation (2/3)

$$P_{e} = 1 - \frac{1}{2} \Pr(c|H_{1}) - \frac{1}{2} \Pr(c|H_{2}) = 1 - \Pr(c|H_{1})$$

= $1 - \Pr\left(\mathcal{N}\left(s_{1}, \frac{\eta_{0}}{2}I_{2}\right) \in \Omega_{1}\right)$
= $1 - \frac{1}{\pi\eta_{0}} \iint_{\Omega_{1}} \exp\left(-\frac{(r_{1} - s_{1,1})^{2} + (r_{2} - s_{1,2})^{2}}{\eta_{0}}\right) dr_{1} dr_{2}$

Integral computation is straightforward if we choose the blue dotted line and the red line as reference axis

$$\begin{split} P_e &= 1 - \Pr\left(\mathcal{N}\left(\left(\begin{array}{c} -d/2\\ 0\end{array}\right), \frac{\eta_0}{2}\mathbf{I}_2\right) \in \Omega_1\right) \\ &= 1 - \frac{1}{\pi\eta_0} \int_{-\infty}^0 d\xi_1 \int_{\mathbb{R}} d\xi_2 \exp\left(-\frac{(\xi_1 + d/2)^2 + \xi_2^2}{\eta_0}\right) \\ &= Q\left(\frac{d}{\sqrt{2\eta_0}}\right) = Q\left(\sqrt{(1-\rho)\frac{\mathcal{E}}{\eta_0}}\right) \\ \mathbb{P}. \text{ Salvo Rossi (SUN.DIII)} \quad \text{Digital Communications - Lecture 06} \quad 6 / 16 \end{split}$$

Binary Error Event

 $e_{m,\ell} \triangleq \{ \boldsymbol{r} \in \mathbb{R}^N : \| \boldsymbol{r} - \boldsymbol{s}_{\ell} \| \leq \| \boldsymbol{r} - \boldsymbol{s}_m \| \| H_m \}$

i.e. the event that $r|H_m$ is closer to s_ℓ than s_m

Upper Bound on SER

$$e|H_m = \bigcup_{\ell=1, \ell \neq m}^M e_{m,\ell}$$
 and $e_{m,\ell_1} \bigcap e_{m,\ell_2} \neq \emptyset$, thus

$$\Pr(e|H_m) = \Pr\left(\bigcup_{\ell=1, \ell \neq m}^{M} e_{m,\ell}\right) \le \sum_{\ell=1, \ell \neq m}^{M} \Pr\left(e_{m,\ell}\right) = \sum_{\ell=1, \ell \neq m}^{M} Q\left(\frac{d_{m,\ell}}{\sqrt{2\eta_0}}\right)$$

where $d_{m,\ell} = \| {m s}_m - {m s}_\ell \|$ is the (m,ℓ) th distance

$$P_{e} = \frac{1}{M} \sum_{m=1}^{M} \Pr(e|H_{m}) \le \frac{1}{M} \sum_{m=1}^{M} \sum_{\ell=1, \ell \neq m}^{M} Q\left(\frac{d_{m,\ell}}{\sqrt{2\eta_{0}}}\right)$$

Q(x) is decreasing with x, thus an upper bound is

$$P_e \leq (M-1)Q\left(\frac{d_{min}}{\sqrt{2\eta_0}}\right)$$

where $d_{min} \triangleq \min_{m,\ell:m \neq \ell} \{ d_{m,\ell} \}$ is the minimum distance P. Salvo Rossi (SUN.DIII) Digital Communications - Lecture 06 9 / 16

Lower Bound on SER (2/2)

Define $D_{min} \triangleq \{m \in \mathbb{N}_M : d_m = d_{min}\}$, i.e. the indices of constellation points with at least one neighbor at minimum distance, then

$$P_e \ge \frac{1}{M} \sum_{m=1}^{M} Q\left(\frac{d_m}{\sqrt{2\eta_0}}\right) \ge \frac{1}{M} \sum_{m \in D_{min}} Q\left(\frac{d_m}{\sqrt{2\eta_0}}\right) = \frac{M_{min}}{M} Q\left(\frac{d_{min}}{\sqrt{2\eta_0}}\right)$$

where M_{min} is the cardinality of D_{min}

At least 2 constellation points are at minimum distance, thus $M_{min} \ge 2$

$$P_e \ge \frac{2}{M} Q\left(\frac{d_{min}}{\sqrt{2\eta_0}}\right)$$

Lower Bound on SER (1/2)

Define $d_m \triangleq \min_{\ell:m \neq \ell} \{d_{m,\ell}\}$, i.e. the minimum distance from the *m*th constellation point, then

$$\Pr(e|H_m) \ge Q\left(\frac{d_m}{\sqrt{2\eta_0}}\right)$$

i.e. keep the binary error event providing the largest contribution to $e|H_m$

$$P_e = \frac{1}{M} \sum_{m=1}^{M} \Pr(e|H_m) \ge \frac{1}{M} \sum_{m=1}^{M} Q\left(\frac{d_m}{\sqrt{2\eta_0}}\right)$$

Q(x) is \cup -concave with x, thus from Jensen's inequality

 $P_e \ge Q\left(\frac{d_\mu}{\sqrt{2\eta_0}}\right)$

where $d_{\mu} \triangleq (1/M) \sum_{m=1}^{M} d_{m}$ is the average minimum distance P. Salvo Rossi (SUN.DIII) Digital Communications - Lecture 06 10 / 16

Approximate SER

The minimum distance is d_{min} is the parameter that summarizes the performance of a generic modulation format

Coherent with the fact that errors between close symbols are more frequent than errors between far-apart symbols

$$\frac{2}{M}Q\left(\frac{d_{min}}{\sqrt{2\eta_0}}\right) \le P_e \le (M-1)Q\left(\frac{d_{min}}{\sqrt{2\eta_0}}\right)$$

A popular approximation for SER is

$$P_e \approx M_{min} Q\left(\frac{d_{min}}{\sqrt{2\eta_0}}\right)$$

named the nearest-neighbor approximation

11 / 16

P. Salvo Rossi (SUN.DIII)

Exact BER

Bit Error Rate (BER) is usually preferred to SER because allows to compare modulation formats with different alphabet size

$$P_b = \sum_{m=1}^{M} \sum_{\ell=1}^{M} \Pr(\text{bit in error} | H_m \to H_\ell) \Pr(H_m \to H_\ell)$$
$$= \sum_{m=1}^{M} \sum_{\ell=1}^{M} \Pr(\text{bit in error} | H_m \to H_\ell) \Pr(\mathbf{s}_\ell | \mathbf{s}_m) p_m$$
$$= \sum_{m=1}^{M} \sum_{\ell=1}^{M} \frac{E(\ell, m)}{\log_2(M)} \Pr(\mathbf{s}_\ell | \mathbf{s}_m) p_m$$

where

- $\Pr(s_{\ell}|s_m) = \int_{\Omega_{\ell}} f_{r|H_m}(r) dr$ is the probability of transmitting s_m and receiving s_{ℓ} (depends on the signal constellation and the receiver)
- E(ℓ, m) is the number of bits in error when transmitting s_m and receiving s_ℓ (depends on the labeling among symbols and bit strings)
 P. Salvo Rossi (SUN.DIII)

Approximate BER (1/2)

For ASK, PSK, QAM, or other modulations allowing for Gray labeling

- assume errors only occur between adjacent symbols (very likely at high SNR)
- each symbol in error provides 1 single bit in error over $\log_2(M)$ transmitted bits

$$P_b \approx \frac{1}{\log_2(M)} P_e$$

Gray Labeling

Gray code is a binary numeral system such that two successive values differ in only one bit, i.e. adjacent symbols have Hamming distance equal to 1

ASK, PSK and QAM always allow Gray labeling

Approximate BER (2/2)

In case of orthogonal modulation (e.g. FSK)

- the constellation is totally symmetric, thus $P_e = \Pr(e|H_m) = (M-1)\Pr(s_\ell|s_m) \text{ with } m \neq \ell$
- each constellation point is at d_{min} from each other
- M/2 constellation points have the same the bit of interest as s_1 , and M/2 constellation points don't, thus $P_b = (M/2) \Pr(s_\ell | s_m)$ with $m \neq \ell$

$$P_b = \frac{M/2}{M-1}P_e$$
$$\approx \frac{1}{2}P_e$$

15 / 16