

Inter Symbol Interference

- In addition to the AWGN, the channel is modeled through an LTI system with impulse response $h_c(t)$
- The convolution of the transmitted pulse with the channel impulse response spreads the pulse duration at receiver location outside the generic symbol interval
- The signal received within the *k*th symbol interval depends on the *k*th transmitted symbols and also on other transmitted symbols
- This phenomenon is denoted Inter Symbol Interference (ISI)

P. Salvo Rossi (SUN.DIII)

Digital Communications - Lecture 10

∃ つへで 3 / 10

ヘロト ヘロト ヘヨト ヘヨト

Outline

1 Inter Symbol Interference

2 Nyquist Criterion

3 Examples of Nyquist Pulses

ISI in ASK Transmission (1/2)

Denote

$$p(t) = h_{tx}(t) \star h_c(t) \star h_{rx}(t)$$

$$w_o(t) = w(t) \star h_{rx}(t)$$

Digital Communications - Lecture 10

P. Salvo Rossi (SUN.DIII)

- 20

ISI in ASK Transmission (2/2)

 au_d takes into account for transmission delay

Nyquist Criterion for Zero ISI (2/2)

In frequency domain, last equality provides

$$P_d(f) \star \frac{1}{T} \sum_{k=-\infty}^{+\infty} \delta\left(f - \frac{k}{T}\right) = 1$$

thus, in frequency domain, Nyquist criterion for Zero ISI is

Nyquist Criterion for Zero ISI (1/2)

Transmit and receive filters must be designed such that the equivalent pulse p(t) satisfies

$$\begin{cases} p(\tau_d) = 1\\ p(\tau_d + kT) = 0 \qquad \forall k \neq 0 \end{cases}$$

or else, denoting $p_d(t) = p(t + \tau_d)$,

$$p_d(kT) = \begin{cases} 1 & k = 0 \\ 0 & \forall k \neq 0 \end{cases}$$

or else

$$p_d(t) \cdot \sum_{k=-\infty}^{+\infty} \delta(t - kT) = \delta(t)$$

Nyquist Pulses

Denoting W the bandwidth of the channel, it should be clear that

- if $T < \frac{1}{2W}$ there is no possibility to have zero ISI
- if $T = \frac{1}{2W}$ there is one possibility to have zero ISI i.e. the sinc pulse
- if $T > \frac{1}{2W}$ there are many possibilities to have zero ISI one popular choice is the raised cosine pulse

Nyquist Pulses: sinc pulse

- $W = \frac{1}{2T}$
- ideal pulse
- non-causal
- discontinuous in frequency domain

	< .	□ 	5₽ →	${}^{*} \in \Xi \rightarrow$	< ≣ >	2	900
P. Salvo Rossi (SUN.DIII)	Digital Communications - Lecture 10						9 / 10

Nyquist Pulses: raised cosine pulse

