
Digital Communications

— Lecture 12 —
Performance over Fading Channels

and Diversity Techniques

Pierluigi SALVO ROSSI

Department of Industrial and Information Engineering
Second University of Naples

Via Roma 29, 81031 Aversa (CE), Italy

homepage: http://wpage.unina.it/salvoros

email: pierluigi.salvorossi@unina2.it

P. Salvo Rossi (SUN.DIII) Digital Communications - Lecture 12 1 / 27

Outline

1 Noncoherent/Coherent Detection

2 Channel Estimation

3 Diversity

P. Salvo Rossi (SUN.DIII) Digital Communications - Lecture 12 2 / 27

Flat-Flat Fading

The signal model is

r(t) = Hs(t) + w(t)

where H = α exp(jϑ) is a complex-valued r.v.

Rayleigh fading is a common and simple model:

• H ∼ NC(0, 2σ2
h), i.e. <{H},={H} ∼ N (0, σ2

h)
• α ∼ Rayleigh(σh)
• ϑ ∼ U(−π, π)
• usually E{|H|2} = E{α2} = 2σ2

h = 1

The effect of fading is mainly changing the receive SNR into a r.v.

γb = α2Eb/η0
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Intuition

Consider a BPSK over a channel with average SNR γb = 10 dB such that

• half of the time is in “state 0” with γb = −∞ dB

• half of the time is in “state 1” with γb = 13 dB

The BERs corresponding to the two channel states are

• Pr(e|state 0) = 1/2
• Pr(e|state 1) = 10−10

The average BER is

Pe =
1
2

Pr(e|state 0) +
1
2

Pr(e|state 1) ' 0.25

The BER for BPSK over an AWGN channel with SNR γb = γb = 10 dB is

Pe ' 4 · 10−6
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Noncoherent Detection (1/2)

Hm : r = αejθ︸︷︷︸
H

sm + w

fr|Hm,α,θ(r) =
(

1
πηo

)N
exp

(
−‖r − αe

jθsm‖2

ηo

)

=
exp

(
‖r‖2+α2Em

ηo

)
(πηo)N

exp
(
− 2
ηo
<{αe−jθsH

mr}
)

=
exp

(
‖r‖2+α2Em

ηo

)
(πηo)N

exp
(
−2α‖r‖

√
Em

ηo
cos(∠r − ∠sm − θ)

)

fr|Hm,α(r) =
1

2π

∫ 2π

0
fr|Hm,α,θ(r)dθ =

exp
(
‖r‖2+α2Em

ηo

)
(πηo)N

I0

(
2α‖r‖

√
Em

ηo

)
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Noncoherent Detection (2/2)

fr|Hm
(r) =

∫ ∞
0

fα(a)fr|Hm,a(r)da

=
∫ ∞

0
fα(a)

exp
(
‖r‖2+a2Em

ηo

)
(πηo)N

I0

(
2a‖r‖

√
Em

ηo

)
da

The ML decision is

û = arg max
m

{
fr|Hm

(r)
}

There is no dependence on the phase of the transmitted signal (∠sm)
Constant-modulus modulations (e.g. PSK and also QAM) cannot be
considered unless performing

• channel estimation

• coherent detection
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Coherent Detection (1/2)

• We assume that the specific realization of the r.v. H = α exp(jθ) is
known at the receiver

• This assumption is commonly denoted Channel State Information at
the Receiver (CSIR)

û = arg max
m

{
fr|Hm,α,θ(r)

}
= arg min

m

{
‖r − αejθsm‖2

}
= arg min

m

{
α2Em − 2α

√
Em‖r‖ cos (∠r − ∠sm − θ)

}
Binary modulation with equal-energy signals

û = arg max
m∈{1,2}

{
<{αe−jθsH

mr}
}

= arg max
m∈{1,2}

{cos (∠r − ∠sm − θ)}
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Coherent Detection (2/2)

Compute the average BER considering H1, as Pe = Pe|H1

The error event is

‖r − αejθs1‖2 > ‖r − αejθs2‖2

‖αejθs1 + w − αejθs1‖2 > ‖αejθs1 + w − αejθs2‖2

‖w‖2 > ‖αejθ(s1 − s2) + w‖2

<{e−jθ(s1 − s2)Hw} < −α
2
‖s1 − s2‖2

Remember that

<{e−jθ(s1 − s2)Hw} ∼ N
(
0, ηo‖s1 − s2‖2

)
‖s1 − s2‖2 = 2(1− ρ)2E

then if we define γb = α2E/ηo

Pe|α = Q

(√
(1− ρ)

α2E
ηo

)
= Q

(√
(1− ρ)γb

)
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Average BER

• The SNR is now a r.v. thus the BER is a r.v.

• The average BER is an important performance measure

Average BER may be computed as follows:

• Compute the BER w.r.t. to a given SNR as done for AWGN (Pe(γb))

• Compute the pdf of the SNR (fγb
(γb))

• Use the total probability theorem

Pe =
∫

R
fγb

(g)Pe(g)dg
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SNR distribution

• Rayleigh fading:
SNR is exponentially distributed γb ∼ Exp(1/Γb)

fγb
(γb) =

1
Γb

exp
(
− γb

Γb

)
u(γb) Γb = (2σ2

h)
Eb
ηo

• Ricean fading:

fγb
(γb) =

1 +K

Γb
exp

(
−(1 +K)γb

Γb
−K

)
I0

√4(1 +K)Kγb
Γb

u(γb)

• Nakagami fading:

fγb
(γb) =

1
Γb

exp
(
− γb

Γb

)
u(γb)
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Binary Modulations over Rayleigh Fading (1/3)

• BPSK

• BER for a given SNR is Pe(γb) = Q(
√

2γb)
• Average BER is

Pe =
1
2

(
1−

√
Γb

1 + Γb

)
≈ 1

4Γb

• BFSK

• BER for a given SNR is Pe(γb) = Q(
√
γb)

• Average BER is

Pe =
1
2

(
1−

√
Γb

2 + Γb

)
≈ 1

2Γb
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Binary Modulations over Rayleigh Fading (2/3)
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Representations for the Q-function

• The classical definition of the Q-function is

Q(x) =
1√
2π

∫ ∞
x

exp
(
− t

2

2

)
dt

and corresponds to Pr (N (0, 1) > x)

• The problem is that the argument x is in the integration limit and not
in the integrand function

• An alternative representation is

Q(x) =
1
π

∫ π/2

0
exp

(
− x2

2 sin2(θ)

)
dθ
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Moment Generating Function

• Consider a r.v. X distributed according to fX(x) with
fX(x) = 0 ∀x < 0

• The Moment Generating Function (MGF) of X is defined as the
Laplace transform of its pdf with reversed argument sign

ΦX(s) = L{fX(x)} (−s) = E {exp(sX)}

=
∫ ∞

0
fX(x) exp (sx) dx

• The nth moment of X is obtained as

E {Xn} =
∫ ∞

0
xnfX(x)dx =

∂n

∂sn
ΦX(s)

∣∣∣∣
s=0
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Moment Generating Function of the SNR

• Rayleigh fading

Φγb
(s) =

1
1− Γbs

• Ricean fading

Φγb
(s) =

1 +K

1 +K − Γbs
exp

(
KΓbs

1 +K − Γbs

)

• Nakagami fading

Φγb
(s) =

(
1− Γb

m
s

)−m
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Alternative Method for Computing the Average BER

• Assume the following BER for a given SNR

Pe(γb) = α exp(−βγb)

• then it is straightforward to get

Pe = αΦγb
(−β)

• Assume the following BER for a given SNR

Pe(γb) =
∫ c2

c1

α exp(−β(x)γb)dx

• then it is straightforward to get

Pe = α

∫ c2

c1

Φγb
(−β(x))dx
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Binary Modulations over Rayleigh Fading (3/3)

• BPSK

• α = 1/π, β(θ) = 1/ sin2(θ), c1 = 0, and c2 = π/2
• Average BER is

Pe =
1
π

∫ π/2

0

1
1 + Γb

sin2(θ)

dθ

• BFSK

• α = 1/π, β(θ) = 1/2 sin2(θ), c1 = 0, and c2 = π/2
• Average BER is

Pe =
1
π

∫ π/2

0

1
1 + Γb

2 sin2(θ)

dθ
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Outage Probability

• Average BER is meaningful when T ≈ Tc,
i.e. a block of transmitted information undergoes many different
channel realizations which fades almost independently

• Outage Probability (OP) is meaningful when T � Tc,
i.e. a block of transmitted information undergoes the same channel
realization and fading causes error bursts

OP denotes the probability that the SNR falls below a given threshold

Pout = Pr(γb < γ0) =
∫ γ0

−∞
fγb

(g)dg

For Rayleigh fading the outage probability is

Pout = 1− exp
(
−γ0

Γb

)
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Channel Estimation (1/2)

• In order to employ coherent detection we need CSIR

• One possibility is to transmit pilot symbols (known at the receiver)

• Pilot symbols must be orthogonal in time or frequency to the data

• Pilot symbols must be less than coherence time or coherence
bandwidth away from the data

Denote up(t) and vp(t) the pth pilot symbol and the corresponding
received signal

vp(t) = Hup(t) + wp(t) , p = 1, . . . , P

A possible estimator could be

Ĥ =

∑P
p=1

∫ T
0 vp(t)u∗p(t)dt∑P

p=1

∫ T
0 |up(t)|2dt

= H +

∑P
p=1

∫ T
0 wp(t)u∗p(t)dt∑P

p=1

∫ T
0 |up(t)|2dt
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Channel Estimation (2/2)

The estimation error is defined as

ε = Ĥ −H =

∑P
p=1

∫ T
0 wp(t)u∗p(t)dt∑P

p=1

∫ T
0 |up(t)|2dt

It has the following interesting properties

E{ε} = 0
ε2
rms = E{ε2}

=

(
1∑P
p=1 Ep

)2 P∑
p=1

P∑
q=1

∫ T

0
dt

∫ T

0
dτ u∗p(t)uq(τ)E{wp(t)w∗q(τ)}

=
ηo∑P
p=1 Ep

=
1

SNRp
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Diversity

Provide the receiver with several replicas of the same information
each undergoing an (ideally) independent channel realization

• denote p the probability that the signal fades below a given threshold

• the probability that L independent replicas of the same information
all fade below the same threshold is pL

Most popular forms of diversity are:

• Time diversity

• Frequency diversity

• Space diversity
• Transmit diversity
• Receive diversity
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Coherent Detection with Diversity (1/3)

The signal model for L independent diversity branches is

Hm : r` = α`e
jθ`︸ ︷︷ ︸

H`

s`(m) + w` , ` = 1, . . . , L

ML decision is

û = arg max
m

{
fr1,...,rL|Hm,α1,...,αL,θ1,...,θL

(r1, . . . , rL)
}

= arg min
m

{
L∑
`=1

‖r` − α`ejθ`s`(m)‖2
}

= arg min
m

{
L∑
`=1

(
α2
`E`(m)− 2<{α`e−jθ`sH

` (m)r`}
)}

Binary modulation with equal-energy signals

û = arg max
m∈{1,2}

{
L∑
`=1

<{α`e−jθ`sH
` (m)r`}

}
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Coherent Detection with Diversity (2/3)

Compute the average BER considering H1, i.e. r` = α`e
jθ`s`(1) + w`, as

Pe = Pe|H1

The error event is
L∑
`=1

‖r` − α`ejθ`s`(1)‖2 >
L∑
`=1

‖r` − α`ejθ`s`(2)‖2

L∑
`=1

‖w`‖2 >

L∑
`=1

‖α`ejθ`(s`(1)− s`(2)) + w`‖2

L∑
`=1

<{α`e−jθ`(s`(1)− s`(2))Hw`} < −1
2

L∑
`=1

α2
`‖s`(1)− s`(2)‖2

Remember that

<{α`e−jθ(s1 − s2)Hw} ∼ N
(
0, α2

`ηo‖s1 − s2‖2
)

‖s1 − s2‖2 = 2(1− ρ)2E
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Coherent Detection with Diversity (3/3)

Then

L∑
`=1

<{α`e−jθ(s1 − s2)Hw} ∼ N

(
0, 2(1− ρ)2Eηo

L∑
`=1

α2
`

)

If we define

α2
L =

L∑
`=1

α2
`

γb = α2
LE/ηo

then

Pe|αL
= Q

√(1− ρ)
α2
LE
ηo

 = Q
(√

(1− ρ)γb
)
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Erlang Distribution

For Rayleigh i.i.d. channels α` ∼ Rayleigh(1/
√

2), i.e. α2
` ∼ Exp(1)

It is easy to show that α2
L =

∑L
`=1 α

2
` ∼ Erlang(L, 1), i.e.

fα2
L
(ξ) =

1
(L− 1)!

ξL−1 exp(−ξ)u(ξ)

fα2
L/L

(ξ) =
LL

(L− 1)!
ξL−1 exp(−Lξ)u(ξ)
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Binary Modulations over Rayleigh Fading with Diversity

Define

γb =
(
E
ηo

)
α2
L

L
= Γb

α2
L

L

Γb = E{γb} =
E
ηo

then

fγb
(γ) =

(
L

Γb

)L γL−1

(L− 1)!
exp

(
− L

Γb
γ

)
u(γ)

and

Pe =
∫ ∞

0
fγb

(γ)Q
(√

(1− ρ)Lγ
)
dγ
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BPSK over Rayleigh Fading with Diversity
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